TADS 3 TOUR GUIDE

FOR TADS 3.1

Eric Eve

Page 1

1.

CONTENTS

L)oo [0 To3 1o o AT 8
S T 1= o [T = | [gL (o To [Tt 1o] o TN 8
1.2, THE SAMPIE GABME...c ittt ekt e bt e o a ket e 4 e Ak b et a4 e sk b et e e ek bt e e e aa kb et e e e b b e e e e enbe e e e e nbr e e e e nnes 9
IO T =100 o] £ (O PO P PP OUPPPT 9
1.4, Startup Code @ GAMEMAEINoooiiiiiieiiiiie ettt e ettt e e e et e e e s s bt e e e ah b et e e e as b et e e e anbr e e e e anbr e e e e anbneeeeanrns 15

(R {010] 1 F3E=1 010 I OXo] a1 a0t (o] ¢ NPT 18
24 TR [a1 (o Yo [T o o [18
FZA A © 1V (o [Yo T = Yo 1 o N 19
A TR wF- 1 (100 1T (o | 20
YA S B 1= Y- Lo | = [0 [@Xo o1 T Tox (o S 21
P T = {0 Yo 1 0 L@ 0] o] 0 T=Tox (o] TP 22
S TR - 1= = {| AT 23
A A = 01 (=] €= 1 o] [T TN 23
2 < TR = T] 1 o T 24
2.9, STAIMWAYDOWN ...ttt ittt ettt ettt e e ettt e o4k e et e e 42t et e e e 4Rk et e e e aa b et e e e aa bbb e e e oA bR et e e aa R e e e e e e bar e e e abreeeeabrneeeaan 25
2.10.]t 1T 1YL PSP PRSP OPP PP PPN 25
2.11. TIAVEIWITNIMESSAGE ..o ittt e e e et e e e e et et e e e e a b et e e e e a b bt e e e et bt e e e anbr e e e e anbbeeeennns 26
2.12. ST =Tod (=115 L0 Lo] PSP PPTRPPRRE 27
2.13. THIOUGNPASSAQEo, 28
2.14. D= 0 1o 1 0 1 29
2.15. TrAVEIMESSAQE 29
2.16. (R Lo Tol 0 gV A1 (01 @T0] o] g =T ox o] 30
2.17. 1D T 30
2.18. (232 1] ¢ 10 To) (T 31
2.19. NOTTAVEIMESSAGE .. eteeeee ittt ettt ettt a bt e e e sa bt e e ot et e e aa ket e e e 4ab et e e e aab bt e e e aabb e e e e anbbeeeeanbbeeeesnbneeaeane 31
2.20. (O] o= EST= To O PO P PO PP P TPPPPPPUPPRTN: 32
2.21. F T (oL@ [0 11 gTo | B e Lo SO TP PP P PP PPPPRP 32
2.22. ONEWAYROOMCONNECTONetetiieeiieieiteeet et e e e sttt e e e e e st e e e e s e s et et e e e s e s s e e e et e e e e e sa e s b r e et e e e e e saannnrnreeaeeneas 34
2.23. PANPASSAGE ... ettt bbbt e e e b e e e e e b bt e e e e bb et e e e bee e e e e bae e e e anrreeeeaae 34
2.24. S 1110 0T = T PP PPPPPNY 36
2.25. [[10T LSTTS = oo 1 o R 38
2.26. [[0 T LTS 39
2.27. [10 [0 [T 015 Lo Lo 39
2.28. o 1177 o) o > PRSPt 40
2.29. L R0 T = | TR 41
2.30. LAV ST =T TR 41
2.31. PN (O 0] [g T<T o3 o] ST 42
2.32. LI \V/=1 (o] a1 1= (o T TR 43
2.33. ROOM MEthOAS AN PIOPEITIESceeiiiiiiii ittt ettt e et e e et e e e sabb e e e e sbbeeeeabbeeeeanes a7

2.33.1. (1010110020700 ¢Yox 1 [o H TP 47

2.33.2. (0010 0] 2= T £ PR 47

2.33.3. CaNNOLGOTRNAIWAY ... 50

2.33.4. canNOtGOThatWayINDarKccooiiiiii 51

2.33.5. [L0L0] 01D L= T S I =Y/ N 51

2.33.6. ENENNGROOIM ... 52

2.33.7. [T aT R L0101 01N\ F= 1 1N 53

[NLo]] 2d0] g =1 o] (ST TR 54
I R \\To 1o | oY a 7=1 o (<IN [} 1 (0o (VT3 1 o) o HHA PR 54
I = 34 (U YRR 55
TR T O 1] (o]0 0] =00 (LU (ISR 55
I S B 1Yo o114 [0] o [P TTT 55
TR T B 11 - o | 57
I 70 T O [o110 o Vo TR PPPPRRIPN 58
T A [410 010177z 1 o] [59
IR S TR O =3 (o]0 01101 141017z 1 o] [60
e T o [1P P P PP PPPPPPPPPPPPPPPPRt 60
3.10. L07e] 1 1o 0T T=T o | EUTT TSP P PP PPPPPPPPPPPPPPPPPPPRY 60

LI L1 LSRR UPPRPOTPRPN 62
T I o 11 o I [11 o Yo [1 Tox 1T TP 62
o I o 11 o I I T= N = T U ot PRSP 62
i TR Vo Ttz 1o 1AL o Y {0 £ TRTTTTT 63
4.4, INItDESC & INIESPECIAIDESCceeeiutiiiie ittt ettt st e e e ettt e e ettt e e ea et e e e ann bt e e e ensbee e e enbeeeeanbeeeeennneas 65
T o 1 o) o T= 1 = = 1o 0 = Lo = PP 66

T~ o 1o = 1| D= o P 66
o 1= Lol] o= PSPPSR 69
T 1011 Q= a 1o IR =T o o) PSP 70
e T T 1 0 1= (o= L1 N PSRRI 70
4.10. R TET 1o I=][RSP OUPRPTUPRRN 71
4.11. 0T Yo [PSP PPOUPRPTUPRRN 72
4.12. Lo ES= TapT ol o N F=T0 1T PP PO PP PPPPPR P 72
4.13. LAV L=T= U= o] = PR RT RSO UPPRPR 73
T 0] o] 7= 11 =T £ PSRRI 74
LT B O T o1 v= 11 o =T T o (o o {1 Tod 1o] o TSP PPRRI 74
LT = 01| I o 41 =Y P PPPPPPPPPPIRE 74
LR T U {1 - T PP PT TR PPPTPPPPPPN 75
L =7 L] ol @o]) - T[T S USSP 75
L T O] o = 1] = S PSPPI 76
LN T @ T T= T F= o [T @ o o = 11 =1 PR 77
5.7. NOtIfyINSErt & NOUIFYREMOVEcoiiiiiiiiiiieiii e e e e s e e e e e e e e s s s a b e e e e eeesssasnteeeeeaeeesannnreneeeaeaens 77
L S T o o1 <= o] (=1 @0] =] =T PRSPPI 79
Lo T B (TS (1 To1 (=To [@] a1 v= 1 1 SRR PPRRIN 81
5.10. (D1 o 1= 0 KT OO PP O PP PP TPPPPPPPPPPPTN 84
5.11. S ((=1(010) Y @0] 01 7= 1] 1 =T PSPPSR OPPPPRTPPP 85
5.12. SPACEOVETTAYteeeei ittt oottt e o bbbt e ook b e et a4k bttt e ek b et e e e R b et e e e bbbt e e e nn et e e s nbe e e e e annnee s 85
5.13. LU o 1= £ o = SRR 86
5.14. == 1 @o] =11 1= SRR 87
5.15. REAISUITACE ...ttt oottt e e e e o4 e b et ettt e e e e e o e a b bbbt e e e e e e e e nab bbbt e e e e e e e sanbnbneneaaaeeas 89
5.16. (70 3 T o113 @10 o] =] 1 1= SO PPPPPRY 90
5.17. (7o) 01 ¢=1[01T 4 5 o o] CH TP TP PO UP PP UPPPPPPPP 92
5.18. [T | L= 0] = 1= P PPPPPPNY 93
5.19. =T 1@ 1 o] o L1 o P PPN 94
B. LOCKS & KBYS ..o 95
6.1. LOCKS & KEYS = INIIOTUCTIONeeiiiiiiiee ittt e et e e et e e e st e e e e sabb e e e e sbbeeeesbbeeeeabreeeeanes 95
T2 I o Tor 2=][SRRSO PRSP 95
T T [T [T Tox £ o Tox 1= o L= RSP PRSPR 96
I T (= Y =T (010 g1 7= 11 o 1= SO TSP PP O PP PP PPPPPPTPPPPPTN: 97
6.5, LOCKADIEWITNKEY ...ttt ettt et e e e st b et e e sabb e e e e aabb e e e e sabbeeeeaabbeeeeabreeeeanes 99
B.6. KBY NG oo 100
B.7. OPENADIE .. 100
6.8. BasiCOPENADIE ... 101
7. LIght @nd FIre oo 102
7.1. Lightand Fire - INtrodUCHION.........cooi i 102
7.2, DHGNINESS ... 102
S TR W o] 11 15T 01U] (ot PSP PR 102
A T = =11 o1 o o | PP PRI 103
A8 T O Uy [o | I w1 =3 Yo U o = SRR 103
ST © 11| - 1o 1] « PP PRI 105
7.7. MatChStiCK & MaAtCNDOOK........oiiii it e e e e e e e e e e e s e et e e e e e e e e s annsnnneeeeeeeean 107
AR T 0)Y 0 T- 11 111 (= PP OPPRPPI 107
8. HidiNG & FINAING....cco oo 110
8.1. Hiding & FINAING = INtrOAUCTIONeeiiiiiiiiiiieieiieeeeeeeeee ettt ettt e e e e seaaaaseaaesaasesesasasssasssssesssssssnsnnnnnnnnnnes 110
o T2 o 1o [T To TR 1 YAV o PP PPPPPPPPRt 110
o T T 1T 11 To TN o)V 2.0 e 1Y/ Vo PP PPPPPPPRS 111
o B S ST To | o £ =YY= o I AN 1S I] (Y o PP PPPPRPPRt 112
S 28 TR o 1o o [T o PR 113
o T T 5T Y= o 1 = = PP PPt 114
LS CF=To [0 =) SR/ @e] g1 o] - TP PPP PP 116
[B R 7= To [0 1= (I [o1 (o To [o 1T o IO RSP RP 116
LS T = T 11 e] o PSP PPPPRPNY 116
LS IR T - o =1 = o 1 | RS 117
LS Y o 41T | IV =T PR 117
Lo TR T Y= i = o) [PP PPPPPPPPPRt 118
Lo 2K T N[0T o1 =T =T | I - | P PPPPPPPRPPRt 119
LS A B)V o =T (o o Tox= 11T LS OO PP PPPRT 119
LS IR R I T RSP SSPPN 123
LS TR I - PSSP 127
9.10. (@01 5 {00 o1 1o) SO 129

9.11. IS/ o PRSP PP RPRR 130

9.12. YT (2 PSS 131
9.13. YN O 1 (o Il 1o oX QPP URPPPPPP 133
L1O. FUSES & DABIMONS ... s 135
10.1. T] T PP PP PT PP TPPPPPPPPPN 135
10.2. [T2 U= 1130 o PP P PP PP PPPPPPPPPPPPPRS 137
10.3. YT ST U ST USSPt 140
10.4. YT g 1SY=T = U] o] o [SRPPt 142
10.5. ol n] 011D =TT 1 4 o] o [T PP PRPPPTPPPRT 142
10.6. ONETIMEPTOMPIDAEIMION ...ttt ettt s et e ettt e s aab e e e e s et e e aan b bt e e enbe e e e e nnbeeeeannnnas 142
S I [To 1B][] = (=T ol @ o] (=T ox £ O PP T PP PPPPPPP 144
11.1. YT o LU 1= =Y ol @ =Tt PSS 144
11.2. 12100 o= S PP TT PP 144
11.3. (=11 01 (@] o] = ox (PSS 145
11.4. I Y= 1Y =T] o= o) PSS 146
11.5. 0TSy R TS] (0] (=1 o] =Tt PSS 146
11.6. 0TSy (10 o [T o =T ot PR 147
11.7. (=] r= L (O] o] [T o T PSP UPUPPP PP 147
12, PUSKING TRINGS AFOUNG ...ttt ettt s st e ettt e e e st b et e s e b b et e e aas b et e e aanbe e e e enbe e e e anbneeeeanenas 149
12.1. TravelPuShable ... 149
12.2. PUSNTIAVEIBAITIEeeiieiiieieeeieeeeeeeeeeeee ettt ettt e ettt et et eeeeeeeeeeaesa s e ae s s aesasasssssssssesesesasssssssssssssssesssnranes 151
R T [01 = T o] o] (SRR AR T =T T PRSP PP R PPPPPP 153
13.1. INEANGIDIES = OVEIVIEW. ...ttt sttt e bttt e s bbbt e e s eabb e e e e aabb et e s anbneeesannneee s 153
13.2. 1= Vo 1 0] PPt 153
13.3. DY =T g o=@] o] 0 [T ol (o] PO PP PTPPPTPPPRTN 153
13.4. (@ ToTox 18 o =T TP U TP PPPTTTPOPPP 155
13.5. V=T o o] (o 11 1 PSRRI 157
13.6. S 1101 011 o [PPNt 158
13.7. 18] 1= 1 0L = PPt 160
13.8. (@0 (o] TSP PPPPPPPPRPPRS 160
13.9. N[0 T ISP PPPPPPPPPPPPPPPIRS 162
R 0t R ST g =T @0 1 o (o] USRS 164
R 20 I B =T o Y YT o | PP PP PPPTPPPRPPRR 165
N 1 = T 1 =1] [170
14.1. AACNADIES = OVEIVIEW ...ttt ettt et e e e oo bbbttt e e e e e s e et bbb e et e e e e e aanbe b b e e e eaesaaaanbbnneeaaeesaannnes 170
14.2. ATBCNADIE ...ttt e oottt e e e e e e e bbb e e e e e e e e e e bbbt e e e e e e e e e aabbereeeaeeeaanae 170
14.3. AT U)7 1 = o = o = PSPPIt 174
14.4. L 180 7Y =T = PSPPIt 176
14.5. PermanentAITACHMENTo et e e e e ettt e e e e e e s e bbb e e e e e e e e e nbaaeeeaaeeeas 177
T N (=11 (Yo | Lo o] o o USSP PPPPP PP 179
15.1. NESTEAROOM OVEIVIEWcceoiiiiiiiiiieieeeieee ettt ettt ettt et ee et eeee et aeaeaeaeaeaaasaesesssssssssasasssssssesssesesasssssesssesesssesssnrnnes 179
15.2. LTS (=To | 2 Lo To] o IO TSP PPPOPPPPPPPPPPPPPOS 179
15.3. BaASICCRNAINcoiiiiiiiiieieeee ettt ettt et e e et et et et e t—ttaata—a—t——t——————————————————————————————————_ 180
15.4. [P 1 {0 € SO UPPPPPPPPPPPPPPPPPPOS 180
15.5. N[g g1 F= 11 P a (o] o VOSSP PPPOPPPPPPPPPPPPPRS 181
15.6. 2 o PSR 183
15.7. (O 0= | TP PPPTR T TPPTP 183
15.8. L 110 | TN =T 1= 0 | o To o ¢ PP 184
15.9. (@11 (0) 1 =T Vo] o [T O O PPPUT PP 185
L 700 K = o o 1 TP PP T PPPPPPPPPPTN 187
T8 Y /< o (o = TP PPT T PPPTPPPPPPTN 189
ST Y= o 1Td =Y =T 1T 191
G Y/ 1 o 196
16.1. IVIURLILLOC ..ottt ettt ettt ettt ettt et e e e e eeaeeeee e e ae e s e e e e s e s e aeeseesasasesessaasesesesasssesesesasnsssesssnrnnes 196
16.2. IMIURIINSTANCE ...ttt ettt ettt et e et e e aeee e e aeeeaaaeaesaaeesaesasassseaaasaeseaesasesssessssssssresssarnnes 197
16.3. L0 F= Yo=Y (=Y F PP PPPOPPPPPPPPPPPPPRS 198
N o 1= o2 1 o 3 200
17.1. (O6]|[=Tod 11V =T € (o] U o I (] £= 11 (o) TP PPTT ORI 200
17.2. CollectiveGroup (IMODBIIE) it e e e e ettt e e e e e e e s bbb e e e e e e e e e annnreneeas 203
S T 1 o] £ F TP UEP TP 206
18.1. Yol o ST PPPTT PP 206
18.2. Y=Y o P PPPPIRS 206
18.3. (0] o] AV =T o1] TP PPPTT ORI 208
18.4. (@Yo Tl YT o L] PP RPR 208

18.5. = TaTe (o] 0] Y= o] { N PSRRI 210
18.6.] 101 (o Y=o £ PR 211
18.7. LT g 1| A =T o T PP TTPPRTP 211
18.8. Yo =Y o1 SRS 211
18.9. = Lo (o] 0T T T 1S o] o PSS 212
FO. ACHOIS & NP CS s 213
19.1. OVEIVIEW = ACLOIS & NPCS ...ttt e ettt e e e e e sttt et e e e e e s nbe bt e eeeeeseaannbaebeeeaeeeesannereeeeas 213
19.2. 2T T (o ot (o] £ PR PPRRT 213
19.3. BasSiC ACLOr CUSTOMIZALIONeieiiiiiiieii ettt et e e e e s e et e e e e e e s e s bbb et e e e e e e e s e nbnbeeeeaaeeesaansnnneeeaaeeens 215
19.4. y Yo (o g (61T =T (o = PO PO PP PPPPPPPPPPPPTN 216
19.5. MOVING ACLOTS ATOUNT ... iiiieii ittt ettt ettt ettt e e ettt e e s kbt e e e ekt et e e s s b et e e s anbe e e e e anbb e e e e anbb e e e s annnnee s 217
19.6. o1 (0] G = 2 R 217
19.6.1. OVEIVIEW = ACIOT STALES ...ueiiiiiiiiii ettt ettt e ettt e e e sttt e e e sa b e e e e snb et e e e snbe e e e s anbaeeeesnbaeeeennees 217
19.6.2. [LT 17N o (o) 5] r= L= PRSP 219
19.6.3. ACCOMPANYINGSTALE ...t i e e e e e et e e e e s s e r e e e e et s st e e et eeessaastaareeeaeesaassteaneeeaeesaansnnanneeeeeesannsnes 219
19.6.4. ACCOMPANYINGINTIAVEISTALE ...eiii it e s e e e s s s e e e e e e s e st eeeeeeesaaanrnnreeeeeesaannnes 220
19.6.5. 10 o (=T o I eI £ = L= SRRSO 221
19.6.6. TN To [=To | Tl I o V=] 5] = L PRSP 223
19.6.7. INCONVEISALIONSTALEiiiiieeiiiiii ettt et e e e e ettt et e ae e e s s abebeeeeeaesesannbeeeeeeaeeseaanntrseeeaaeesaannnes 223
19.6.8. CONVErSAtIONREAUYSTALE ... viiiei ittt e et e e e rabr e e e e nbb e e e e anbneeeennees 224
19.6.9. GIrEEtiNg PrOTOCOISeeiiiiiieee ittt ettt e st e e e it et e e e s abr e e e e e nbe e e e e snbneeeeanees 226
19.7. QLI] oo =1 011 =2 O PP P PP PPPPPPPPPPPPTN 227
19.7.1. QL] o161 = 011 YO PO U PP OPPPPTUPTPP 227
19.7.2. L= 10 oo 230
19.7.3. 0 0 T 10 oo 231
19.7.4. LAY 101V e o 233
19.7.5. L I o] o T TP 236
19.7.6. V= LS X T 237
19.7.7. = o o PP PPPPPPNt 241
19.7.8. L= LI [P T P TOU PP PPPPPTPPP 244
19.7.9. F NS =1 o] oo TP PO T PP OPPPPUPPP 245
e T O R X (o T o] o o PP OT PP PPPPPRO 246
19.7. 11, ASKADOULFOITOPIC ..eeeieiutititeiiittte ittt sttt ettt ettt ettt e skttt e e ettt e s e sk et e e e e b et e s e anbb e e e enbe e e e e nbneeeennnns 249
19.7.12. ASKTEISHOWTOPIC ...eeieiutttiieiiiiit ettt ettt ettt ettt e sttt e s ekttt e s e e et e s e st b e e e e nbr e e e e nbneeeennneas 250
19.7.13. ASKTEllGIVESNOWT OPIC ... i i e e e e 251
19.7.14. YES,NO & SPECIAITOPICS ... ie i 251
R T =Y 1 [251
S R G T 10 1] = oI) o 252
TR R = Y= I] [252
S R T 10 01 = SN 1 o 253
19.7.19. LEAVEBYETOPIC «eeeutteeeiiutiieee ittt e ettt ettt ettt ekttt e sttt e 4 skt e e 4o ek bt e e e e sk bt e e e ek b et e e eanb e e e e e nbb e e e e nbne e e e nnnes 253
RS T O B = 1o 1 £=To |2 o] o[PO RPPPPRPR 253
S T S X oi (0] 4 =3V = o] oo RO PPPRPR 253
19.7.22. HellOGOOUDYETOPIC ...eeueeeiieiiiiit ettt etttk e e s e bt e s et e e e e st e e e e nbne e e e nnenas 254
S T R Y 1T ol o o o TP PO PRSP 254
RS T S o] o o] €1 (01U « IO RO OT PR PPPRPR 257
TR T I T - VU 0T oo 258
S R T W o o =13 (=T o I 0] 0 0= 268
19.8. CONVEISALION INOUES. ...ttt ettt e e e e ettt et e e e e e s e et b be e et e e e e e s aab bt e e e e e e e e e aannbbbbeeeeeeeeaannnbnneeas 275
19.8.1. CoNVErSatioN NOUES = OVEIVIEWcciiiiiiiiiieiee e e ettt e ettt e e e s e e e et e ae e e s e s bnbe e e e e e e e e s anbabneeaeaaeeas 275
19.8.2. (070] 017/ N[00 [TSP PPUT TR UPRTUPPRPN 277
19.8.3. LI] o PR PPTPRRN 278
19.8.4. N Lo 1o o PRSP 279
19.8.5. S o LT T e oo PSPPSR 279
19.8.6. LT L =1 =T @ o] Y= £T= 4o o SR 281
19.9. y o= g0 F= 11 =] 44 1RO TPPRPPPPPP 287
19.9.1 F o =] g o F= 11 =] o TP URTTTP 287
19.9.2 (7] 01172 [T g o F= 11 (=] 1 TP RUU T PRPPRP 288
19.9.3 (D=1 F AT o [T g o F= 11 (=10 R TP PRSPPI 290
19.9.4 More AGeNndaltem EXAMPIESooo ittt e e e e e s bbb e e e e e e e s e annbeeeeeaaeeaaaane 291
19.10. CoOMMANAING NPCS ..ottt ettt e ettt et e e e e s oo e beee e et e e e e e o aa b et e e eeaeeaeaannbbseeeeaeesaaasnbbseeaaaeesaannne 294
19.10.1. Overview - ComMmMANAING NP CS......cooiiiiiiiii et e ettt e e e e e e s e bbb e et e e e e e e aanbnbreeaaaeaeas 294
19.10.2. COMMANATOPIC. .. uttteieeete et ittt e e e e ettt et e e e oot bt ettt e ee e e o e s babeeeeeae e e s e nbabeeeeaae e e s e nbnbbeeeeaeee s e nnnbreeaeaaeans 295
19.10.3. DefaultCOMMEANTTOPICeieiteiiieiiiiiee ittt s ettt et et e e st e e s eab bt e e s ens bt e e s ennbe e e e enbeeeeenbaeeeeannees 296

IS T K0 I S @) Y7=1 ¢ ¢ To [T o] oY) V1 @4 1 4] .1 = L o PR 296

19.10.5. TCOMMANUTOPIC ..uuvvrerrrieesiiiuuieereeeeesisattteereeeeessaasateeereaeeaaaasntenereaeesaaasntereraaeeesaansssanereeeessannsnsrnnreeenns 297
19.10.6. A Modified DefaultCommMaNndTOPICcuuviiiieie s icceieie e e e e e e e e s s e e e e e e e sn it e e e e e e e e snnrnnreeeeaeeeas 301
20, CONSUIADIES. ...ttt ettt R s Rt Rt a R e an e e e e R ne e re e nnneeaa 303
20.1. CONSUITBDIE ...ttt e R e e sa e e e bt e n e e s r e e e s nn e e s nn e e e nr e re e nes 303
20.2. (@] 015 U1 1 (SRR 305
20.3. D22y o101 (Ofe] 101 1 o] o o PP PP PUPPP PP 306
P2 R S (oo] 14T OO O PP U PP PPPPPPPI 308
21.1. S Tole g1 0o I @ A=Y oV 1= O PP OU PP PUPPPP P 308
21.2. F= Lo (ol 1o 1o o = TR OOPPPTRPTN 308
21.3. F o g1 C3Y =T 0 o= o RSO PURPRN 309
21.4. 0] 0] (=Y Ao T =AY =T 2 0= o SRS 312
P T 1= Lo | o 1] L PP PRR PR 312
P B T 11T Lo | 2o 1] 01 1 o To PSPPSR PT R PPR 313
21.7. SCOMERANKTADIEciiiiii ittt ettt e e st e e s et e s e e et e e e sa e e e nn e e nnne e an e e e nnreeennes 313
21.8. L= ST PO PP 314
P o 1101 £ PRSPPI 316
22.1 HINES = OVBIVIBW ...ttt ettt ettt e e e e e ettt e e e e e e s e s s et eeeeeee e e s e aa b e beeeeeeeeesanbnbeeeeaaeeesanntnnnneeaaeeann 316
22.2. L] oL L 01T O P TP PO PP PPPPPPPPPPPPTN 316
22.3. L T 11 1= o T PSR 316
224 LT - U SRRSO 317
22.5. T PRSPPI 320
b T U 11 =T gl o] g = U1 T ORI 322
23.1. (70 ool [0 [T o T R =T 1 0= 15 S PPPPPRS 322
23.2. (= oY [0 =T =0 1Yo 0 = £ [0 o ISPt 322
23.3. [1= T T o =] 01O PPt 322
23.4. Message SUDSHLULION ParamMeEterSiiiiiiiiiiiiiiiiiiieieeeeee ettt ettt eeeeeeeeeaeeessseeesesesesssssssessssessssesssnnnnes 322
23.5. PASE TENSE ...ttt e a e a e e e 323
24, TEMPIALES... .o, 324
24.1. ACHIEVEMENT TEMPIALEeeieei ittt et e e st e e e st bt e e e st et e e e e bbe e e e sbbeeeeanbneeeeanes 324
24.2. y ol (o) g =T 1 4] 0] = L= TP TP PP PPPPPPPPPPPPTN 324
24.3. E N o] o o I=T00] o] o (PO PP P PP PTPPPPPPPPPPTN 324
24.4., CONVNOUE TEMPIALE ...ttt e et e e eab et e e e bbbt e e e bbbt e e e nbe e e e e anbneeeeaneeas 324
245, DeadENdCOoNNECIOIrTEMPIALEooiiiiiiie ettt e e s et e e s rnb e e e s sanneee s 324
24.6. (1= =T | L 10T oo =T 40 == PPt 324
24.7. LY =T = o] L= =T 0 01] = USSPt 325
24.8. L= o L= = 0 01] = PPt 325
24.9. Y=Y 1 S A =0]] = PSPPIt 325
24.10. FOOtNOte TEMPIALEo 325
24.11. GOl TEMPIALE. ... 325
2402, HINETEMPIALEottt e e s bttt e st b et e e sk b et e e s bbbt e e s bbbt e e s bbb e e e s bbbe e e e nanneee s 325
24.13. MENUITEM TEMPIALEeeiiiiieiie ettt et e s bttt e s bbbt e e s bbbt e e s asbb e e e s asbbe e e e anbbe e e e annneee s 326
24.14. MenuLonNgTOPICIEM TEMPIALEciiiiiiiiiitiiie ettt et e e bbbt e e s bbbt e e sbb b e e e e anbbe e e s aanneeens 326
24.15. MenUTOPICIEM TEIMPIALEoiiiiiiee ittt sttt e e bttt e s bbbt e e s bbbt e e s aabb e e e e anbae e e s annneeens 326
P N T Y 1T~ Tol o o (o =T o] o] = L= PO PRI 326
24.07. MURILOC TOIMPIALEeeiiei ittt et e bttt e st b et e skt et e e s bbbt e e s bbbt e e s bbb e e e s bbbe e e s nnnneee s 326
24.18. NoTravelMessage TemMPIAte........cccoo i 326
24.19. OneWayRoomConnector TEMPIAte...........coooiiiiiiii i 326
24.20. Passage TemPIate ... 326
24.21. ROOM TEMPIALE. ... 327
24.22. ShuffledEventList TEMPIALEcoo i 327
24.23. SPECIalTOPIC TEMPIALEeeiiiiiiieee ettt ettt e bt e e s bt et e e s bbb e e e s anbb e e e e annteeesannneeens 327
P 1 Y (= 1= To B =T 40T o] - L= TP PRI 327
24.25. SYNCEVENTLIST TEMPIALEeeiiiiiiiiie ettt sttt sttt e e s bbbt e e s bbbt e e s anbb e e e e anbae e e e nnneeeens 327
P T I o 11 o B =T 4T] = 1= TP 327
P A o110 IS] t= L (= =T 0] o] o (TP 328
P T o] o1 od =y g1 { YA =T o 1] o= = PP 328
P2 T o] o] (ol €] (o 18] o I =T 0 4] o] = LT PP POPTPPPRT 328
24.30. TravelMesSSage TEMIPIALEoooi ittt e ettt e e e e e s e be bttt e e e e e s e nbbbbe e e e e e e e s anbbnbeeaaaaeeas 328
24.31. UNEhING TEMPIALE ...ttt oottt e e e e oo bbbttt e e e e e e o e aba b e et e e e e e e s anbbbeeeeeaeeeaannbsbneeeaaaaeas 329
24.32. VOCADODJECE TEMIPIALEoeiiiiiiiiiii ettt e e e e e st e e e e e e s e bbbb e e e e e e e e e anbbbbeeeaaaeeas 329
D T O o - 1 [o [T UOUPUPPRPTN 330
25.1 (O g = T o =2 (o] gV T O TP EPP TR POP 330
25.2. (O E= T gL oIS (o] gV N 0 G PSPPI 330

(@ g = T o =TS {0] G T 0 SRS 330

(@4 g = T o =TS {0] G 0 5 0 SRS 331
(O g = T o =S (o] G T 0 R S SS 331
(O gT= T o =TS (o] g T 0 R S SRR 332
Changes fOr JUIY-SEPL 2004cooiiieiiiiii et e e e e e e e e e s et e e e e e e e s santereeeeeeesesanntaeaeeeeeeeeaanneeneees 332
(O g = T o =TS {0] G T 0 SRR 332
(O F=TgTo oIS (o] e G D PP POV P PP OPPPPPPP 332
Changes fOr MAY 2004 ..ottt ettt ettt s st e e e e s b et e e e b bt e e e aab et e e aas b et e e s st b e e e e nbe e e e anbreeeeanres 333
(O FoTgTo oI (o GV N U C] o BT PP PO UP PP PPPPPP PP 333
Y E= Yol g1 o 11 2 007 T PO TT PP O PP PPPUPTP 333
... 334

Page 7

1. Introduction

1.1. General Introduction

The adv3 library that comes with the TADS 3 Interactive Fiction authoring system is extensive and powerful. It can
also seem rather overpowering to new users of TADS 3, because there is so much to learn, and one hardly knows
where to start looking for what one needs.

Enter the TADS 3 Tour Guide. Its aim is to give a guided tour of some of the main features of the TADS 3 library. We
shall not be exploring every nook and cranny (at this stage it would probably be more confusing than helpful to do so).
Nor shall we be able to wander down every side street and alley, though we may poke our noses into a few. What we
shall aim to do is to walk round most of the main streets so that their basic layout and interconnections will hopefully
start to become clear.

This Tour Guide is not intended as the first port of call in learning TADS 3. If you are a complete beginner | strongly
recommend you start with my introductory Getting Started in TADS 3 : A Beginner's Guide, which you can download
from http://www.tads.org (or which you may already have with your TADS 3 distribution). Although there will be some
overlap with material covered there, the Tour Guide assumes basic familiarity with programming in the TADS 3
language and the definition of simple TADS 3 objects. For this Guide is not a TADS 3 manual, or a substitute for one.
Neither is it an introduction to writing games in TADS 3, or an exhaustive description of every Class, property and
method in the TADS 3 library. Finally, it is not a complete guide to the TADS language, many features of which are
already well documented in the System Manual that come with the TADS 3 distribution, or which can be downloaded
from http://www.tads.org.

What this Tour Guide is is a kind of Guided Tour to the TADS 3 library, that tries to take in as many as possible of the
classes, properties and methods that are likely to be useful to most game authors. The assumption is that what you
will find useful is not so much a load of abstract explanation, but rather a series of concrete examples. This Tour
Guide therefore takes you through developing a sample game, introducing each Class in turn with one or two
examples of its use. Later sections re-use classes and properties introduced before, and sometimes suggest further
sophistications.

This Guide may thus be used either as a tutorial or as a reference (or both). As a tutorial it may be worked through
from start to finish, developing the game step-by-step until all the main features of the library have been introduced
and exemplified; you may like to use it as a follow-on tutorial from Getting Started in TADS 3. But it may also be used
as a reference to the use of various library classes. For the latter purpose the Windows help file version of this Guide
is likely to prove most useful; for the former you may prefer the PDF version. Note, however, that the Tour Guide will
probably be more useful as a reference once you have worked through it as a tutorial, since in the very nature of its
treatment of developing a game, its later sections presuppose objects and concepts mentioned in earlier sections, and
many techniques have to be introduced in passing. Note also that a complete reference to the library is provided by
the TADS 3 Library Reference Manual.

Of necessity there must be some compromise between the need to develop the sample game in a reasonably logical
sequence and the desirability of presenting the various library classes in a reasonably logical sequence. For this
reason we start by looking at Rooms and Connectors, since laying out some kind of map is necessary before anything
much else can happen in a game. We then go through the other Classes representing concrete game objects, before
going on to look at the creation of NPCs and the use of more abstract classes for conversations, scoring, hints and the
like.

IMPORTANT NOTE - This Guide is intended for use with TADS 3.1. Although changes from the immediately
preceding versions of TADS 3 (especially TADS 3.0.12 and later) are relatively minor prior, successive library updates
have substantial changes; if you are using a significantly older version of TADS 3 a great deal in this guide may not
work. Please therefore:

e Update to TADS 3.1 before attempting to work through this Guide. See http://www.tads.org/t3dl.htm.
o If, for some reason, you are unable to update to TADS 3.1, please be aware that any problems you encounter may
be due to incompatibilities between versions of the library rather than bugs in the sample code.

Finally, | hope this Tour Guide will prove helpful, and even enjoyable to use. | always welcome feedback and
suggestions, not least those that point out genuine errors, typos or bugs. | can be contacted by email on eric dot eve
at hmc dot ox dot ac dot uk.

Page 8

http://www.tads.org/
http://www.tads.org/
http://www.tads.org/t3dl.htm

Eric Eve
08-May-11

1.2. The Sample Game

The Sample Game we shall be developing together is whimsically called The Quest of the Golden Banana. There is
nothing stunningly original in its design, and it will probably strike you as Dr Who meets the Lord of the Rings with a
hint of old-fashioned text adventures like Zork thrown in for good measure. For our purposes, however, its contrived
nature is an advantage, since it allows us to set up of sorts of implausible situations and puzzles that can put the
TADS 3 library through its paces.

To give a brief summary of the game (which you might want to try playing before getting to work on this Tour Guide),
you (i.e. the Player Character) start outside the entrance of a cave. The only way to go is in, and once you're in there's
a rockfall that blocks the only obvious way out. To complete the game you need to fulfil two objectives: (1) locate the
Golden Banana and cast it into Mount Gloom to prevent its falling into the hands of the dreaded Cabal, and (2) help
the young woman you'll quickly encounter to get back out of the cave (i.e. both you and the woman must arrive back
at the starting location). To fulfil the first objective you need to sail a ship round an underground lake to various
destinations; to fulfil the second you need to get a TARDIS back in full working order: you'll also need the TARDIS to
fulfil the first objective, travelling to locations as disparate as King Solomon's palace three thousand years in the past
to an abandoned space station a thousand years in the future.

1.3. Templates

Since we shall be using templates extensively to define objects throughout this Guide, we had better start by
explaining what they are and how they work.

If you have worked through Getting Started in TADS 3 or some similar introductory guide, you'll already have
encountered templates. Templates are built into the TADS 3 language (in the sense that the language provides the
facility to define and use them) and into the adv3 library (in the sense that the library defines a number of standard
templates). This Tour Guide accordingly assumes that the use of templates is the standard TADS 3 coding style, and
is to be encouraged. But first, what exactly is a template?

Put simply, a template is a means of defining an object in a more succinct form in order to save typing effort and
produce less verbose code. On the principle that a couple of examples are a good deal easier to follow than several
paragraphs of abstract, theoretical discussion, we'll explain this by showing how templates work with the most
common kind of objects you're likely to define in a TADS 3 game: Rooms and Things.

We'll start with a room. If we defined a Room without using a template, we should have to assign every property we
wanted assigned explicitly. Such a definition might look like:

entranceCave : Room

roomName = 'Entrance Cave'
destName = 'the entrance cave'
desc =

"Compared with the narrow tunnel leading out to the north, this
rough-walled cave seems positively spacious. A red sign fixed to
one wall suggests that the narrow tunnel is the only way back out to
the valley, while a blue sign next to it welcomes you to the cave.
Directly under the signs a narrow ledge has been carved into the
wall. There appear to be no other caves at this level, but a sturdy
steel ladder leads down through a large round hole in the floor. "

north = entranceTunnel
out asExit (north)

Taking advantage of the Room template, the same definition could be coded as:

Page 9

entranceCave : Room 'Entrance Cave' 'the entrance cave'
"Compared with the narrow tunnel leading out to the north, this
rough-walled cave seems positively spacious. A red sign fixed to
one wall suggests that the narrow tunnel is the only way back out to
the valley, while a blue sign next to it welcomes you to the cave.
Directly under the signs a narrow ledge has been carved into the
wall. There appear to be no other caves at this level, but a sturdy
steel ladder leads down through a large round hole in the floor. "

north = entranceTunnel

out asExit (north)

These two definitions are entirely equivalent; both assign exactly the same values to the same properties.

So how does this work? The Room template is defined in the library as follows:

Room template 'roomName' 'destName'? 'name'? "desc"?;

This definition means that when defining an object of class Room (or one of its subclasses), if the class name is
immediately followed by a single-quoted string, that string will be assigned to the roomName property; the next single-
quoted string, if present, will be assigned to the destName property, the next to the name property, and a double-
guoted string that comes at the end of this list will be assigned to the desc property. The question mark after an item
in a template definition means that this element is optional and may be omitted.

Accordingly, the following definitions using the Room template are all legal:

entranceCave : Room 'Entrance Cave'

Which is equivalent to:

entranceCave : Room
roomName = 'Entrance Cave'

Or

entranceCave : Room 'Entrance Cave'
"Compared with the narrow tunnel..."

Which is equivalent to:

entranceCave : Room
roomName = 'Entrance Cave'
desc = "Compared with the narrow tunnel..."
;
Or
entranceCave : Room 'Entrance Cave' 'the entrance cave'

’

Which is equivalent to:

entranceCave : Room
roomName = 'Entrance Cave'
destName = 'the entrance cave'
’
Or
entranceCave : Room 'Entrance Cave' 'the entrance cave' 'entrance cave'

’

Which is equivalent to:

Page 10

entranceCave : Room

roomName = 'Entrance Cave'
destName = 'the entrance cave'
name = 'entrance cave'

Note, however, that properties defined in the template must appear in the order shown, so that the following would not
match the template:

entranceRoom "Compared with the narrow tunnel..." 'Entrance Cave";

entranceRoom 'Entrance Cave' "Compared with the narrow tunnel..." 'the entrance cave';

In practice, virtually all rooms will need to define a roomName and a description (and this is the point of the template,
to allow the common properties of all rooms to be defined with the minimum of effort). So you will normally define
rooms in one of two forms:

myRoom : Room 'My Room Name'
"My room desc "
/* other properties/methods */

or

myRoom : Room 'My Room Name' 'my room destName'
"My room desc "
/* other properties/methods */

Not only does this make defining rooms briefer, it also makes your code more readable, since the key properties
(roomName, destName if defined, and desc) will always appear in the same relative location in the definition of a
room, rather than at some possibly random location in a list of properties (for these key properties will seldom be the
only properties you'll need to define on a room). Once you get used to the template, you can look at a room definition
and see its roomName and description at once.

Note that a template defined for a class is also valid for all its subclasses. So the Room template we have just
described can (and should) also be used for OutdoorRoom, DarkRoom and FloorlessRoom (and, indeed, for any
specialized subclasses of Room you may define in your own game).

Now let's look at the definition of the Thing template (which also applies to all the subclasses of Thing, i.e. virtually
every game object that represents a physical object in the game world, unless there's a more specific template
applying to the subclass).
The Thing template is defined like this:
Thing template 'vocabWords' 'name' @location? "desc"?;
This means that typical Thing definitions will tend to look like this:
brassCoin : Thing '(small) brass coin/groat*coins' 'small brass coin' Q@longCave

"On the obverse is the head of King Freddie the Fat, and on the reverse

is stamped ONE GROAT. "

Which is exactly equivalent to:

brassCoin : Thing

vocabWords = '(small) brass coin/groat*coins'

name = 'small brass coin'

location = longCave

desc = "On the obverse is the head of King Freddie the Fat, and on the reverse

is stamped ONE GROAT. "

Or this:
Page 11

++ fluidLink : Thing 'fluid link' 'fluid link'
"It's a long transparent tube. Both ends are capped with some kind of shiny
metal, and at one end is a tiny hole. "

Which is exactly equivalent to:

++ fluidLink : Thing

vocabWords = 'fluid link'
name = 'fluid link'
desc = "It's a long transparent tube. Both ends are capped with some kind of shiny

metal, and at one end is a tiny hole. "

The main difference is that the second example, the fluidLink, uses the ++ notation to specify its location relative to
some previously defined object, so that it does not need to set its location property by any other means. Since
@location? inthe Thing template includes a question-mark to show that this element is optional, it can be omitted
from the object definition and the template will still match. The brassCoin, however, does not use the + syntax to
determine its location, so this needs to be done some other way; hence we specify its location using @longCave.

You may define the occasional Thing that is so insignificant that it does not merit a description, in which case you can
simply omit the double-quoted string from the definition, making for extremely concise code, e.qg.:

+ peanut: Food 'peanut/nut' 'peanut';

or

peanut : Food 'peanut/nut' 'peanut' @kitchenTable;

This also illustrates how subclasses of Thing (of which Food is one) can use the same template as Thing.

There's two further types of template we ought to consider; the first is one that can match alternatives at the same
location within the sequence of properties. Here's a simple example from the library:

DefaultTopic template "topicResponse" | [eventList];
This template means that you can define either

DefaultTopic "Bob looks bored with your question";
Meaning

Default Topic

topicResponse = "Bob looks bored with your question"
Or
DefaultTopic ['Bob looks bored', 'Bob yawns', 'Bob is so bored he falls asleep'];
Meaning
DefaultTopic
eventList = ['Bob looks bored', 'Bob yawns', 'Bob is so bored he falls asleep']

(Which isn't actually very useful unless your DefaultTopic also inherits from an EventList class, but that's another
matter).

A more complex example is provided by:
TopicEntry template +matchScore?

@matchObj | [matchObj] | 'matchPattern'
"topicResponse" | [eventList] ?;

Which can be matched by something as simple as
Page 12

TopicEntry @bob
"<g>That's none of your business!</g> he declares. "

Or something as complex as:

TopicEntry + 110 [silverCoin, goldCoin, brassCoin]
[
' <g>I\'ve never been interested in coins.</g> he growls. ',
'<g>Don\'t try to tempt me with money - I can\'t stand the stuff.' he complains. ',
'<g>Filthy lucre! Take it away!</g> he demands. ',
'<g>The root of all evil.</g> he opines '

Although we shan't try to run through all the possible permutations here.

The remaining type of template we need to consider is that which uses the inherited keyword in its definition. In fact,
the library defines very few of these; one (fairly important) example is:

Passage template ->masterObject inherited;

In this context the inherited keyword refers to the templates of all Passage's superclasses, so this template could
potentially represent a series of templates, in which inherited is replaced with the template of each of Passage's
superclass in turn (and also with nothing). Passage inherits from Linkable, Fixture and TravelConnector, none of
which defines a template. Linkable inherits from object (so there's no template there). Fixture inherits from
NonPortable which inherits from Thing which inherits from VocabObject; TravelConnector also inherits from Thing.
The possible templates Passage can inherit from are therefore those for Thing and for VocabObject. This foregoing
definition is thus equivalent to the following:

Passage template -> masterObject;
Passage template -> masterObject 'vocabWords';
Passage template -> masterObject 'vocabWords' 'name' @location? "desc"?;

Note that this is almost but not quite equivalent to:

Passage template -> masterObject 'vocabWords'? 'name'? @location? "desc"?;

The reason it is not equivalent is that this template would allow the location or desc properties to be specified in the
template without the name property, which the real Passage template will not.

Note that since Passage inherits from Thing and VocabObject, it is also perfectly legal to use the Thing and
VocabObject templates with a Passage, e.g.:

Passage 'passage';
Passage 'long passage' 'long passage' @diningRoom "The long passage leads into the hall. ";

All this actually looks a good deal more complicated than it will ever work out in practice, for in practice, if you want to
use a Passage (or one of its subclasses) you will either use the Thing template to define it, or the form of the Passage
template in which inherited picks up the Passage template. Thus, although you can use other template combinations
with Passage, in practice most of the time (perhaps 99% of the time), you will use Passage and its subclasses as if its
template were defined:

Passage ->masterObject? 'vocabWords ' 'name' @location? "desc"?;

This applies equally to the other classes for which the library defines templates including the inherited keyword,
namely Enterable and Exitable.

Finally, to see how templates work with multiple inheritance, consider the following:

class TestA : object
weight = 0
colour = nil
mydesc = nil

Page 13

Class TestB : object
bulk = 0
texture = nil

’

class TestC : TestB, TestA;

’

TestA template +weight 'colour' 'mydesc'?;
TestB template +bulk 'texture';

testMe : TestC +20 'rough' ;

testMeAgain : TestC +30 'red' 'wooden';

Results in

testMe : TestC
weight = 0
colour = nil
myDesc = nil
bulk = 20
texture = 'rough'

’

testMeAgain: TestC
weight = 30

colour = 'red'
myDesc = 'wooden'
bulk = 0

texture = nil

’

The testMe object has a definition that in principle could match either the TestA template or the TestB template. It is
the TestB template that is actually matched because TestB comes earlier in the class list of TestC. On the other hand
testMeAgain has a definition that can only match the TestA template, so it is the TestA template that is matched.

Finally, we should consider how the inherited keyword works in the context of multiple inheritance. If we now go on to
define:

TestC template inherited 'shape';

The ‘inherited' keyword can inherit any of the templates from any of TestC's superclasses, or else nothing at all. The
definition is thus equivalent to defining the following three templates:

TestC template 'shape';
TestC template +bulk 'texture' 'shape';

TestC template +weight 'colour' 'mydesc'? 'shape';

Note also that objects of class C (such as testMe and testMeAgain) will also continue to match templates defined on
its superclasses (in this case, the templates for ClassA and ClassB).

Suppose we also define an object:
testMeShape : TestC +10 'blue' 'large' 'square';

Now, this can only match the last form of the template, so it will mean weight=10, colour='blue’', mydesc='large' and
shape='square’. But what of our previous two objects?

As before, testMe has bulk=20, texture="rough’, while testMeAgain has bulk=30, shape='wooden’, texture="red". Since
the TestC template is defined later in the file than the other two, the other two still match first.

Page 14

1.4. Startup Code : gameMain

Before we can start writing the game proper, we need to provide a tiny amount of startup code. Since TADS 3.0.6n the
startup code you have to supply for a game has been reduced to a minimum. Basically all you have to do is to define a
gameMain object that specifies the player character, perhaps sets some options, and (optionally) shows the
introductory and concluding messages, something like:

gameMain : GameMainDef
initialPlayerChar = me
showIntro ()
{

"Finding yourself at a loose end in the Parser Valley,
you have wandered up to take a look at the famous
Eerhtsdat Caves. You're not entirely sure what they're
famous for, or why they should be worth a look, but that's
what it said the guidebook you found abandoned on the
back seat of the bus, so it must be true. Anyway, you're
here now, so you reckon you may as well take a look.\b";

}

setAboutBox ()

{
"<ABOUTBOX><CENTER>The Quest of the Golden Banana\b

v <<versionInfo.version>>\b
(c) 2004 Eric Eve\b
</CENTER></ABOUTBOX>";

}

showGoodBye ()
{

"<.p>Thanks for playing!";
}

’

You can do more than this on gameMain. Later on, for example, we'll be discussing how you can set up the maximum
score and a score rank table here. You can also set the properties allowYouMeMixing (true by default), and
allVerbsAllowAll (also true by default) In case it isn't obvious what these do, here's how the comments in the library
code describe them:

¢ allowYouMeMixing - Option flag: allow the player to use "you" and "me" interchangeably in referring to the player
character. We set this true by default, so that the player can refer to the player character in either the first or second
person, as long as the player character normally uses either or these (in other words, this option is meaningless in a
game when the narration refers to the player character in the third person). If desired, the game can set this flag to
nil to force the player to use the correct pronoun to refer to the player character. We set the default to allow using
"you" and "me" interchangeably because this will create no confusion in most games, and because most
experienced IF players will be accustomed to using "me" to refer to the player character (because the majority of IF
refers to the player character in the second person, and expects the player to conflate the player character with the
player and hence to refer to the player character in the first person). It is relatively unconventional for a game to
refer to the player character in the first person in the narration, and thus to expect the player to use the second
person to refer to the PC; as a result, experienced players might tend to use the first person out of habit in such
games, and might find it jarring to find the usage unacceptable. Furthermore, in games that use a first-person
narration, it seems unlikely that there will also be a second-person element to the narration; as long as both aren't
present, it will cause no confusion for the game to accept either "you" or "me" as equivalent in commands. However,
the library provides this option in case such as situation does arise.

o allVerbsAllowAll - if this option flag is set to nil, ALL (as in TAKE ALL or X ALL) will only be allowed with the basic
inventory management commands TAKE, TAKE FROM, DROP, PUT IN and PUT ON. By default allVerbsAllowAll is
true, which means that ALL can be used with all verbs that allow multiple direct objects (or multiple indirect objects if
your game defines any such verbs). If you wish, you can also override the actionAllowsAll property on individual
actions to determine which of them will and will not accept ALL as a noun phrase.

Page 15

¢ initialPlayerChar - The initial player character. Each game's '‘gameMain’' object MUST define this to refer to the
Actor object that serves as the initial player character.

e usePastTense - Flag: if true, the game will be narrated in the past tense instead of the present tense (e.g. "On the
table was a banana" instead of "On the table is a banana"). This flag can also be switched in-game to switch
between past-tense and present-tense narration.

e verboseMode - Prior to version 3.0.9 this was a logical (true/nil) flag; if it was true, the full room description was
displayed each time the player enters a room, regardless of whether or not the player has seen the room before; if
nil, the full description is only displayed on the player's first entry to a room, and only the short description on re-
entry. Note that the library provides VERBOSE and TERSE commands that let the player change this setting
dynamically. From TADS 3.0.9 this property has become a BinarySettingsitem that shouldn't be overridden by the
game author, first because doing so will almost certainly cause a run-time error, and second because the intention
with the mechanism introduced in version 3.0.9 is that it is up to players rather than authors to set the default they
require. The moral: leave this property alone unless you're very sure what you're doing and have a very good
reason for doing it. Moreover, if you're upgrading an existing game from a pre-3.0.9 version to 3.0.9 or later, make
sure your gameMain doesn't override this property.

Our gameMain object has defined the player character as an object called me, so we next need to define this object,
which, at a minimum, means assigning it to an appropriate class and providing it with an initial location:

me: Actor
desc = "You look even better than the last time you looked.
/* the initial location */
location = outsideCave

"

We'll get round to defining the outsideCave location shortly. In the meantime there's one more job we might want to
get out of the way at this stage, and that is to define the versioninfo object, which provides important information about
the game:

versionInfo: GamelD
IFID = 'cd03d4a8-f39b-ae69-693d-5fddc65f6dd8"

name = 'The Quest of the Golden Banana'
byline = 'by Eric Eve'
htmlByline = 'by
Eric Eve'
version = '1.0"'
authorEmail = 'Eric Eve <eric.eve@hmc.ox.ac.uk>'
desc = 'A combination of cave exploration and time-travel with clear

allusions both to the Lord of the Rings and Dr Who, this game is

primarily an example game to provide a tutorial on the adv3

library for aspiring TADS 3 game authors.'
htmlDesc = 'A combination of cave exploration and time-travel with clear
allusions both to <i>The Lord of the Rings</i> and <i>Dr Who</i>, this game is
primarily an example game to provide a tutorial on the adv3

library for aspiring TADS 3 game authors.'

showCredit ()
{
/* show our credits */
"TADS 3 language and library by Michael J. Roberts ";

/
The game credits are displayed first, but the library will
display additional credits for library modules. It's a good
idea to show a blank line after the game credits to separate
them visually from the (usually one-liner) library credits

* that follow.

*/

"\b";

* ok % X X

}

showAbout ()

{
"Although this game is winnable, and some players may find it
tolerably entertaining, it is primarily designed as a
sample game and programming exercise to accompany the <i>TADS 3
Tour Guide</i>. The game has thus been designed to give
authors a reasonably comprehensive tour of the library, rather

Page 16

than as a satisfactory playing experience by the standards

of modern IF. This may result in (a) a certain quirkiness about
the whole game, (b) somewhat bizarre and derivative plotting and
(c) incomplete implementation of non-essential aspects of the
game such as hints, scoring, and decoration objects. This is
because the game's primary audience - people trying to learn

how to program with the TADS 3 library - only need a limited
number of examples of each feature.\Db

There should, however, be no actual bugs in the game (that is,
there are not <i>meant</i> to be any actual bugs, although

there almost certainly <i>will</i> be some in practice), so should
you encounter any, the author would be grateful for a bug
report. ";

The first half of this object definition basically defines the bibliographical metadata for the game (for a full explanation
see the 'Bibliographical Metadata' article in the Technical Manual). Note in particular the first field, IFID. This is a
unique identifier for your game (a little like an ISBN number for published books), which must be unique to your game.
It is essentially a set of random hexadecimal digits (0-9, a-f) in the format xxxxxxxx-xxxx-xxxx-xXXXX~
xxxxxxxxxxxx. |fyou create a projectin Workbench this number will automatically be generated for you. If you are
creating your project by some other means, you will need to ensure that you add such a number to your definition of
versioninfo. To obtain an IFID that is guaranteed to be truly random, as this needs to be (to ensure the avoidance with
IFID numbers assigned to other games), you can use the TADS IFID generator at http://www.tads.org/ifidgen/ifidgen.
The other bibliographical data (such as the name of the game and its author) should be fairly self-explanatory (but see
the 'Bibliographical Metadata' article for full details). The final two methods contain the text that should be displayed in
response to the credits and about command. Of course, you may prefer the latter to launch a menu rather than just
display a text dump.

Page 17

http://www.tads.org/ifidgen/ifidgen

2. Rooms and Connectors

2.1. Introduction

In the sections that follow we shall endeavour to make use of all the main types of room and travel connector in the

TADS 3 library.

Rooms are locations in which actors and other objects may exist, and between which actors may travel. Since travel is
possible directly from one Room to another, Rooms are also Travel Connectors. TravelConnectors allow travel

between Rooms: their class hierarchy is

TravelConnector
Passage
Stairway
StairwayDown
StairwayUp
ThroughPassage
BasicDoor
Door
AutoClosingDoor
SecretDoor
HiddenDoor
ExitOnlyPassage
PathPassage
RoomConnector

OneWayRoomConnector
RoomAutoConnector
Room

DarkRoom
FloorlessRoom
OutdoorRoom
TravelMessage
DeadEndConnector
NoTravelMessage
FakeConnector

AskConnector

Note that Passage also descends from Fixture, so that Passage and all its subclasses represent physical game
objects as well as connectors. This is not the case with RoomConnector and its descendants or TravelMessage and

its.

Note that TravelMessage also descends from TravelWithMessage.

There is also a ShipBoardRoom class that can be used as a mix-in class for other kinds of room.

Room and its subclasses have a number of methods and properties that it is sometimes useful to override, these

include:

atmospherelList
brightness
destName
enteringRoom
roomAfterAction
roomBeforeAction
roomParts

Page 18

2.2. OutdoorRoom

We'll start our adventure outside a cave, so we'll begin by defining our first room thus:

outsideCave : OutdoorRoom 'Parser Valley' 'Parser Valley'
"To the north stretches the broad green Parser Valley under a clear blue sky,
past a small car park lying just off to the east. The main feature of
interest round here is the notorious Eerhtsdat Caves, the entrance to which
lies just to the south, marked by a large blue sign that proclaims, predictably
enough: \b
ENTRANCE TO THE\nEERHTSDAT CAVES\n"

atmospherelist : ShuffledEventList {
[
'\nA flight of birds disappears off to the west. ',
{: "\nA <<one of>>small<<or>>large<<at random>>
<<one of>>green<<or>>red<<or>>blue<<or>>black<<or>>white<<at random>> car
pulls out of the car park and drives off to the north. " },
'\nAn aeroplane flies far overhead. ',
nil

’

We use the class OutdoorRoom for the obvious reason that it represents an outdoor location (with no walls, and with
ground and sky rather than floor and ceiling). Recall that we have already set the location property of the me object to
outsideCave so that the player character will begin here.

Remember that the Room template (which also applies to OutdoorRoom) allows this abbreviated form of definition:
the template is defined as ' roomName' 'destName'? 'name'? "desc"?; which means that the first single-
guoted string after the class nhame is the roomName property (the name that will be shown in the status line for the
room), the second (which is optional) the destName (the nhame by which the room will be referred to in an exit lister)
and the double-quoted string is the desc property (which will be displayed as the room description). If all these
properties are used, they must be used in the order defined by the template, and before any other properties are
defined for the room.

In other words, the definition:

outsideCave : OutdoorRoom 'Parser Valley' 'Parser Valley'
"To the north stretches the broad green Parser Valley under a clear blue sky,
past a small car park lying just off to the east. The main feature of
interest round here is the notorious Eerhtsdat Caves, the entrance to which
lies just to the south, marked by a large blue sign that proclaims, predictably
enough: \b
ENTRANCE TO THE\nEERHTSDAT CAVES\n"

is exactly equivalent to writing out in full:

outsideCave : OutdoorRoom

roomName = 'Parser Valley'
destName = 'Parser Valley'
desc = "To the north stretches the broad green Parser Valley under a clear blue sky,

past a small car park lying just off to the east. The main feature of

interest round here is the notorious Eerhtsdat Caves, the entrance to which
lies just to the south, marked by a large blue sign that proclaims, predictably
enough: \b

ENTRANCE TO THE\nEERHTSDAT CAVES\n"

At this point we should pause to consider the relation between some of these properties. The roomName is the room
title displayed in the room description and the status line; typically, this will be in title case (e.g. "Hall of the Mountain
King"). The destName is the title given to the room in the exit lister that appears in response to the 'exits' command, or
when you try to move in direction you can't go (e.g. "north, back to the hall of the mountain king"). The plain name
property is the title used by the parser to refer to the room when it features in commands (which can normally only
occur if the room is given vocabWords). By default name is defined as roomName.toLower, and destName is defined
as theName. Often this gives reasonable results, but you might often want to override it, as in this case where Parser

Page 19

Valley is a proper name we want used both for the roomName and the destName.

We'll define one extra property for OutsideRoom at this point, namely its atmosphereList. If this is defined to hold a
Script object, the roomDaemon will automatically call its doScript method each turn; in practice this means we can
make it an anonymous nested object of a Script class. Here we use a ShuffledEventList to display a series of strings
in random order.

In order to vary the description of cars leaving the car park, we use the <<one of>>...<<or>>...<<at random>>
construction to choose both the size and the colour of the car. The embedded expression <<>> syntax can generally
be used in a single-quoted string, so in certain contexts (although in this particular case we'd probably just about get
away with it). A double quoted string cannot be used as an element in the eventList property of an ShuffledEventList,
but an anonymous function can, and the double-quoted string can be printed within the anonymous function. When
the anonymous function consists of only a single statement, as here, we can use the short form syntax shown, i.e.

{: statement }

Note that the statement should then not be concluded with a semicolon.

2.3. FakeConnector

The room outsideCave was defined previously. Its description refers to a valley to the north and a car park to the east.
We do not want the Player Character to go wandering off in those directions, but there should be a reasonable
response to any attempts to do so; in particular the game should respond with a sensible message if the player types
the commands EAST or NORTH. The FakeConnector is just the job for this sort of situation, where we want to
provide a soft boundary. The two FakeConnectors to be added to the room definition are shown in bold.

outsideCave : OutdoorRoom 'Parser Valley' 'Parser Valley'

"To the north stretches the broad green Parser Valley under a clear blue sky,

past a small car park lying just off to the east. The main feature of

interest round here is the notorious Eerhtsdat Caves, the entrance to which

lies just to the south, marked by a large blue sign that proclaims, predictably

enough: \b

ENTRANCE TO THE\nEERHTSDAT CAVES\n"

north : FakeConnector { "You've come here to explore the caves, not the valley. " }

east : FakeConnector { "You've only just come from there -- you've no reason to go back just
now. " }

atmospherelList : ShuffledEventList {

[

'A flight of birds disappears off to the west. ',

{: "\nA <<one of>>small<<or>>large<<at random>>
<<one of>>green<<or>>red<<or>>blue<<or>>black<<or>>white<<at random>> car
pulls out of the car park and drives off to the north. " },
'An aeroplane flies far overhead. ',
nil

At this point you can compile and run the game to test that it is working properly.

Note that we once again use a template to abbreviate the business of writing the FakeConnector definition. The
property in double quotes that we are defining for each FakeConnector here is in fact its travelDesc property (defined
by the NoTravelMessage template, which FakeConnector inherits). This is called by the connector's showTravelDesc()
method only for the Player Character (so that, for example, the message will not be shown repeatedly if the PC is
being accompanied by one or more NPCs), while showTravelDesc() is in turn invoked by noteTraversal(traveler). The
last of these methods - noteTraversal - is defined for all TravelConnectors, whereas the other two - travelDesc and
showTravelDesc - are defined on TravelWithMessage and classes that descend from it.

The FakeConnector works very like the NoTravelMessage. The only difference is that a direction attached to a
NoTravelMessage won't be included in a list of exits (e.g. in response to an EXITS command, or in the status line),
whereas that attached to a FakeConnector will. A NoTravelMessage should therefore be used to explain why travel is
not possible in a direction in which it's reasonably apparent that travel isn't possible, while a FakeConnector should be
used to make travel apparently possible in a direction in which it isn't really, e.g.. to provide a "soft boundary" to the
map.

Page 20

2.4. DeadEndConnector

In the previous section we added a pair of FakeConnectors to prevent the player character from going wandering
north into the valley or east into the car park, although there's nothing physically preventing him from doing so. When
using the FakeConnectors for this purpose we basically blocked the PC from travelling north or east by providing him
motivational reasons for not doing so. The alternative would be allow him to do so, but then have him return to his
starting point (either because the way turns out to be blocked, or because the PC finds nothing of interest). So instead
of the FakeConnectors used in the previous section, we could use a pair of DeadEndConnectors thus:

outsideCave : OutdoorRoom 'Parser Valley' 'Parser Valley'
"To the north stretches the broad green Parser Valley under a clear blue sky,
past a small car park lying just off to the east. The main feature of
interest round here is the notorious Eerhtsdat Caves, the entrance to which
lies just to the south, marked by a large blue sign that proclaims, predictably
enough: \b
ENTRANCE TO THE\nEERHTSDAT CAVES\n"
north : DeadEndConnector { 'Parser Valley'
"You start to stride off into the valley, but soon decide it's not that interesting,

so you wander back towards the cave entrance. " }

east : DeadEndConnector { 'the car park'

"You go and wander round the car park for a few minutes, but decide you don't want to
leave just yet, so you return to the cave entrance. " }

atmospherelList : ShuffledEventList ({
(
'A flight of birds disappears off to the west. ',

{: "\nA <<one of>>small<<or>>large<<at random>>
<<one of>>green<<or>>red<<or>>blue<<or>>black<<or>>white<<at random>> car
pulls out of the car park and drives off to the north. " },
'An aeroplane flies far overhead. ',
nil

’

At first sight it may look as if we could have used a FakeConnector for this purpose and it would have done the job just
as well, and this is indeed almost the case. Nevertheless there are a couple of distinctions between FakeConnector
and DeadEndConnector that are worth observing, even if they may seem a bit subtle at first sight.

The first is that traveling via a DeadEndConnector triggers travel notifications while attempting to travel via a
FakeConnector does not. So, for example, suppose there was an NPC present who might react to our attempts to
walk away from the cave entrance; suppose that if we try to go in any direction except south into the cave she
(assuming a female NPC) objects and prevents our leaving (we'd implement this with a beforeTravel() method on the
NPC's current ActorState, but that's the sort of thing we'll be coming to some way ahead, so we shan't worry about the
details just now). If we used a FakeConnector to represent what happens when the PC tries to go north or east, then
we'd never see the NPC's protest. If we used a DeadEndConnector, however, the NPC's protest would be triggered,
and we'd see her protest in place of the message describing our wandering round the valley or car park. The first
case, using a FakeConnector, is appropriate in situations where the PC doesn't even attempt to travel and we're
simply displaying a message explaining why not; since the PC doesn't attempt to travel, there's no reason why anyone
or anything should react to his non-attempt. The second case is appropriate when the PC does (at least notionally)
attempt the travel, and where the message we display describes that (albeit simulated and circular) travel unless
something or someone acts to prevent it, such as our (for now) putative female companion who insists on our entering
the cave instead.

So, in brief:

e Use a FakeConnector to explain why your PC refuses to attempt travel in a direction in which travel would be
physically possible.

e Use a DeadEndConnector to simulate the effect of your PC travelling in a direction (which doesn't actually connect
to another location on your game map) and then returning to his starting point.

And now on to the second difference. If you look at the code we just changed, you'll see that we added a second
property in the DeadEndConnectors, just before the double-quoted strings describing the aborted walk into the valley
and car park. These extra properties are the single-quoted strings 'Parser Valley' and 'the car park’, which name the

Page 21

locations to which these connectors notionally lead (although in reality they lead nowhere and we aren't going to
implement a Parser Valley or car park location in our game). The property to which we are giving a value here is
called apparentDestName; the point of it is that the exit lister (shown in response to an explicit EXITS command or an
attempt to move in a direction for which no connector has been defined) will show these as the destinations that can
(notionally) be reached by travelling via the DeadEndConnector. For example, an EXITS command issued in our
starting location might generate the response:

Obvious exits lead north to Parser Valley, south, and east to the car park.

If you compile the game and try it out as it stands, however, you'll find these destination names appear only after the
PC has attempted to travel via these DeadEndConnectors. In some situations (namely where the PC doesn't know
where a connector leads till he tries traversing it) this may be just what we want. In this case, however, it's perfectly
obvious from where the PC's standing that the valley is to the north and the car park to the east, so ideally we'd like
these destination names to appear even before the PC attempts to travel. We can do this by overriding the
actorkKnowsDestination method on the location to indicate which connectors the PC already knows the destinations
of even without travelling:

outsideCave : OutdoorRoom 'Parser Valley' 'Parser Valley'

actorKnowsDestination (actor, conn)

{

return conn is in (east, north) ? true : inherited(actor, conn);

}

There are two further points to note about this. In the above method east and north are actually references to our two
DeadEndConnectors. Neither DeadEndConnector has a name of its own, so the only way of referring to them is via
the properties to which they are attached, namely outsideCave.north and outsideCave.east. Since, in this case, we
are referencing these properties from a method of outsideCave, we don't need to prepend the object name to them; in
this context they can be referred to simply as 'east' and 'north' meaning the TravelConnectors attached to the east and
north properties of the current object.

The second point is that we're not restricted to using actorKnowsDestination with DeadEndConnectors; the method
can be used to signal that the NPC already knows the destination of any kind of TravelConnector (including another
Room, if a direction property points straight to another Room, as is usually most often the case).

2.5. RoomConnector

So far we can't actually leave the starting location. We could simply define the next location and simply point to it from
the starting room, but in this case we want to make the tunnel into the cave subject to a rockfall that may block it (in
either direction). Once the player starts exploring the cave system, he or she will then have to find another way out.

An efficient way to perform this task is with a RoomConnector, since we can conditionally block passage through it.
We can define the appropriate RoomConnector thus:

entranceTunnel : RoomConnector
rooml = entranceCave
room2 = outsideCave

blocked = nil
canTravelerPass (traveler) { return !blocked; }
explainTravelBarrier (traveler)

{
"After a few paces down the tunnel it becomes all too clear
that it has been blocked by a recent rockfall, so there is

nothing for it but to turn round and go back. ";

}

’

The properties room1 and room2 define the two rooms that will be linked by this connector (note that we haven't
defined entranceCave as yet, so the game won't compile till we do). We define a custom blocked property to
determine whether or not the tunnel has been blocked by the rockfall. The canTravelerPass method (defined on all
TravelConnectors) determines whether a traveler can traverse this connector. In this case we want to allow travelers
to pass if the connector is not blocked, but not otherwise, so we simply returned !blocked (i.e. not blocked). If travel is

Page 22

forbidden the explainTravelBarrier method is invoked, so we define it to display an appropriate message in the event
that the tunnel is blocked.

Note that the tunnel is not represented as a physical object in the game (although it could have been): the
RoomConnector is an abstract object linking the two rooms (although in a sense it does duty for a representation of a
tunnel that can be blocked).

Note also that it will be necessary to make the appropriate direction properties of both outsideCave and entranceCave
point to this RoomConnector. We'll do that next.

2.6. asExit

The asExit() macro can be used when we want more than one direction to point to the same destination, but we only
want one of the directions to appear in the list of exits (the others effectively being synonyms). In the outsideCave
room the cave entrance is described as lying to the south, so that the Player might type either SOUTH or IN to enter it.
Here we'll make SOUTH the explicit way in and add handling for IN as a synonym using asExit:

outsideCave : OutdoorRoom 'Parser Valley' 'Parser Valley'
"To the north stretches the broad green Parser Valley under a clear blue sky,
past a small car park lying just off to the east. The main feature of
interest round here is the notorious Eerhtsdat Caves, the entrance to which
lies just to the south, marked by a large blue sign that proclaims, predictably
enough: \b
ENTRANCE TO THE\nEERHTSDAT CAVES\n"

north : FakeConnector { "You start to stride off into the valley, but soon
decide it's not that interesting, so you wander back towards the cave
entrance. " }

south = entranceTunnel
in asExit(south)
east : FakeConnector { "You go and wander round the car park for a few
minutes, but decide you don't want to leave just yet, so you return
to the cave entrance. " }
atmospherelist : ShuffledEventList {
[
'A flight of birds disappears off to the west. ',
{: "\nA <<one of>>small<<or>>large<<at random>>
<<one of>>green<<or>>red<<or>>blue<<or>>black<<or>>white<<at random>> car
pulls out of the car park and drives off to the north. " },
'An aeroplane flies far overhead. ',
nil

Once again, the new properties to be added are shown in bold. Note that we point the south property not to another
room, but to the previously defined RoomConnector, entranceTunnel.

2.7. Enterable

The room definition for outsideCave will work fine (once we have defined the entranceCave Room) if the player types
IN or SOUTH or even ENTER, but since the room description mentions a cave, the player may try to ENTER CAVE or
EXAMINE CAVE. To cover this possibility we should define a cave object and make it enterable:

+ Enterable ->entranceTunnel 'eerhtsdat cave/entrance/caves' 'cave'
"The entrance to the cave is large and welcoming; two large people could easily walk in
side by side without stooping. "

This definition uses the Enterable template.

Page 23

We use the + syntax to locate this Enterable in outsideCave (so make sure its definition comes after that of
outsideCave and before anything else).

Since there is no need to refer to this object from anywhere else in our game code we can define it as an anonymous
object; there is no need to give it an object name, we simply use the class name (without a preceding colon).

Important Note.

Enterable, in common with EntryPortal, Exitable and ExitPortal, superficially resembles Passage-type objects like
ThroughPassage in that it represents a game object which one can go through and end up in a different location.
Unlike the various Passage objects (ThroughPassage, Door) etc., Enterable, Exitable, EntryPortal and ExitPortal are
not TravelConnectors and have none of the TravelConnector methods or properties. Also, unlike Passages and
Doors, they do not descend from Linkable, which means, for example, that an EntryPortal cannot be the masterObject
of an ExitPortal; these classes cannot be linked together as pairs pointing to each other.

Passages and Doors typically refer to other destinations through their otherSide or destination properties.

Enterable, EntryPortal, Exitable and ExitPortal refer to their destination through their connector property, which may
simply be set to the location you want an actor to end up in when entering or exiting such an object, but may instead
be set to a TravelConnector object.

2.8. Room

We can now define the second room in the game. Since this will be an interior room (albeit inside a cave rather than a
building) we'll make it of the Room class:

entranceCave : Room 'Entrance Cave' 'the entrance cave'
"Compared with the narrow tunnel leading out to the north, this
rough-walled cave seems positively spacious. A red sign fixed to
one wall suggests that the narrow tunnel is the only way back out to
the valley, while a blue sign next to it welcomes you to the cave.
Directly under the signs a narrow ledge has been carved into the
wall. There appear to be no other caves at this level, but a sturdy
steel ladder leads down through a large round hole in the floor. "

north = entranceTunnel
out asExit (north)

Note that the cave's north property points to the previously defined RoomConnector, and that we use the asExit macro
to allow OUT as a synonym for NORTH.

Once again, note the use of the Room template to define the common properties of this Room. The first single-quoted
string, 'Entrance Cave' is the name of the Room. The second 'the entrance cave' (which is optional - we could just
leave it out) is its destName (the name that will appear in exit listings). The double quoted string that follows,
"Compared with the narrow... ", is the room description.

Although this is an underground cave, we assume it will be permanently lit by some means or other. In more complex
situations you might want to override the brightness property to vary according to circumstance (as is exemplified in
the definition of the secretPassage, which comes later).

At this point it should be possible to compile and test the game once more.

Page 24

2.9. StairwayDown

The description of entranceCave refers to a sturdy steel ladder leading down through a hole in the floor. This ladder is
best implemented as a stairwayDown, which is both a physical game object that can be examined and a
TravelConnector that can be traversed, by CLIMB and CLIMB DOWN commands. The ladder can simply be defined
as:

+ downLadder : StairwayDown 'sturdy steel ladder' 'sturdy steel ladder'

"The ladder leads down through a large hole in the floor. "

Here we are simply using the standard Thing template, although since StairwayDown inherits (indirectly) from
Passage, it can also use the Passage template.

We can then add a down property to the room definition to point to this connector:

entranceCave : Room 'Entrance Cave' 'the entrance cave'
"Compared with the narrow tunnel leading out to the north, this
rough-walled cave seems positively spacious. A red sign fixed to
one wall suggests that the narrow tunnel is the only way back out to
the valley, while a blue sign next to it welcomes you to the cave.
Directly under the signs a narrow ledge has been carved into the
wall. There appear to be no other caves at this level, but a sturdy
steel ladder leads down through a large round hole in the floor. "

north = entranceTunnel
out asExit (north)
down = downLadder

Note that as yet nothing defines where we end up when we go down the ladder. This is because there will be a
corresponding StairwayUp in the cave below, and the StairwayUp will point to downLadder as its masterObject. The
game will automatically link the StairwayUp to its masterObject and vice versa, so that when we traverse the
StairwayDown it will know that its destination is in the corresponding StairwayUp's location. (We could equally well do
this the other way round and make the StairwayUp the masterObject of the StairwayDown).

2.10. StairwayUp

We first need to add a minimal definition of the room in which we'll put the bottom end of the ladder:

mainCave: Room 'Large Cave'
"The flickering orange light from the blazing torch fixed to the wall
accentuates the naturally ruddy hues of this large, irregular cave,
which seems to be something of a major hub in the cave system. A
large rock rests against the wall to the north.
A sturdy steel ladder leading upwards. "

up = upLadder
The main thing to note here is that we point the up property of the room to the upLadder object we're about to define,

so that in can be traversed either in response to an UP command, or in response to a CLIMB (UP) LADDER
command. We next define the basic upLadder object (using the Passage template):

+ upladder : StairwayUp ->downLadder
'sturdy steel ladder' 'sturdy steel ladder'
"The ladder leads up through a hole in the ceiling.

The one thing to note here is the use of the -> in the template syntax to link the upLadder to its masterObject, the
corresponding StairwayDown, downLadder. The two Stairway objects are now linked so that traversing one will take
us to the location of the other (we could equally well have done this the other way round by having downLadder point

Page 25

to upLadder as its master object, although we would not want both of them pointing to each other).

Either way, our ladder will work fine, but now we want to add a refinement. Remember when we defined the
entranceTunnel RoomConnector we gave it a blocked property to simulate the effect of a rockfall? Well, now we want
to trigger the rockfall the first time the PC climbs the ladder back to the entranceCave. We could do this by overriding
the stairwayUp's noteTraversal method, perhaps along the following lines (using an additional climbed property we
define to make sure that the rockfall occurs only once):

+ upladder : StairwayUp ->downLadder
'sturdy steel ladder' 'sturdy steel ladder'
"The ladder leads up through a hole in the ceiling. "
noteTraversal (traveler)
{
if (!'climbed)
{
"As you climb the ladder you hear what sounds like a thunderous rockfall
up above. ";
entranceTunnel .blocked = true;
climbed = true;
}
}
climbed = nil

’

There is no reason why we should not do it this way, but since we want to explore as much of the library as possible,
we'll next look at another way of doing it using TravelWithMessage.

2.11. TravelWithMessage

TravelWithMessage is a mix-in class for use with TravelConnectors (note that some descendents of TravelConnector -
TravelMessage, NoTravelMessage and FakeConnector - include TravelWithMessage in their definition in any case).
TravelConnector overrides noteTraversal(traveler) to call showTravelDesc(), which in turn calls either travelDesc (if
the Player Character is doing the traveling) or npcTravelDesc (if an NPC is doing the traveling).

Firstly, we'll add TravelWithMessage to the upLadder's class list so that we can use its travelDesc property. We take
advantage of the fact that this will call upLadder's doScript method provided that it also inherits from the Script class or
one of its descendents. In this case we'll use the StopEventList class with two items in its eventList. The first time the
PC traverses the upLadder the first event in the eventList will be fired, and thereafter the second one will (defining with
the Passage template):

+ upladder : TravelWithMessage, StairwayUp, StopEventList ->downLadder
'sturdy steel ladder' 'sturdy steel ladder'
"The ladder leads up through a hole in the ceiling. "
eventList =

[

new function

{

"As you climb the ladder you hear what sounds like a thunderous rockfall
up above. ";
entranceTunnel .blocked = true;

b,
'You climb the ladder again. '

1

’

This takes advantage of the fact that an eventList can contain, inter alia, single-quoted strings (such as 'You climb the
ladder again. '), which will just be displayed, or anonymous function pointers, in which case the anonymous function
will be executed. To create an anonymous function containing more than one statement, as we wish to do here, we
have to use the new function syntax:

new function

{

statementl;,

Page 26

sStatement?2;

In this case the function simply prints an appropriate message about the rockfall and sets entranceTunnel's blocked
property to true.

You can now recompile and test the game so far.

2.12. SecretDoor

The description of mainCave includes a rock to the north. We'll make this a secret door that reveals a secret passage
behind when it is pushed to one side (using the Thing template):

+ rock: SecretDoor 'large rock' 'rock'
"A large rock <<isOpen ? 'lies to one side of a passage beyond'
'leans against the north wall of the cave'>> . "
dobjFor (Push)
{
verify () {}
action ()
{
makeOpen (!isOpen) ;
"The rock rolls aside. ";

Note that this needs to be defined just after mainCave, so that it is included in mainCave's contents. Note also that we
need to add the following to the definition of mainCave:

north = rock

The passage is opened by pushing the rock to one side, so we override the action() part of dobjFor(Push) to bring
about the desired behaviour. SecretDoor descends from BasicDoor, which defines makeOpen(stat) method; this
method sets the isOpen property to stat, which should be either true (for open) or nil (for closed). To make pushing the
rock open the passage if it is closed, and close it if it is open, we call makeOpen (!isOpen). We also test the isOpen
property to provide a description of the rock that depends on its position.

We next need to define the location on the far side of the rock:

secretPassage : Room 'Secret Passage' 'the secret passage'
"This hitherto secret passage narrows to a long tunnel running north. To the
south <<rock2.isOpen ? 'an opening leads out into a large, ruddy-hued cave'
'a large rock blocks the way out'>>. "
south = rock2
brightness = (rock2.isOpen ? 3 : 0)

’

/* This rock is simply the other side of the rock defined in mainCave
* In this definition we use the Passage template

*/

+ rock2 : SecretDoor -> rock 'large rock' 'large rock'
"It's a large rock, too heavy to lift. "
dobjFor (Push)
{
verify () {}
action ()
{
makeOpen (!isOpen) ;
"The rock rolls aside. ";

Page 27

’

The second rock (rock?) is simply the first rock seen from the other side; we link it to the rock with -> which defines the
masterObject property. Otherwise everything behaves much the same as the rock, except that for variety we vary the
description of rock2 in the room description.

A further refinement we can make is to have the illumination of the secretPassage room depend on the boulder's
being pushed aside. If light enters the passage only through the exit into the startCave, then pushing the boulder shut
while inside the secretPassage will cut off the light. To accomplish this we override the brightness property of
secretPassage to vary according to whether the boulder is open or not.

2.13. ThroughPassage

The secretPassage room refers to a tunnel leading north. The tunnel itself isn't an interesting location, it's simply a
route for getting elsewhere. The player may however try to refer to it, so we can usefully implement it as a
ThroughPassage - something that you can ENTER or GO THROUGH and that takes you directly to its destination.
This time we shan't implement a corresponding Passage object at the other end, so we need to set the tunnel's
destination property to the room where we'll end up if we traverse the tunnel, the yet-to-be defined smallCave room.

Since we envisage this as quite a long tunnel, however, we could display a message representing the long walk down
it when we travel through it; this could be achieved simply by overriding noteTraversal, but instead we'll take the
opportunity to illustrate a simpler use of TravelWithMessage. All we need to do is to override travelDesc with the
message we want displayed.

+ tunnel : TravelWithMessage, ThroughPassage 'tunnel' 'tunnel'
"The dark tunnel looks large enough for a single person to
walk through. "

travelDesc = "You walk down the tunnel for some way and finally
arrive in a small cave. "
destination = smallCave

Since the tunnel is described as running north from the secretPassage, the player may simply type N or NORTH to
enter it, so we need to add the following to the definition of secretRoom:

north = tunnel

We could also use a couple of anonymous ThroughPassage objects to represent the tunnel and the hole that are
mentioned in the description of the entranceCave. At first sight there may seem to be a problem with this: we don't
want GO THROUGH TUNNEL to bypass the RoomConnector we've set up for returning to the valley, and we'd
probably want GO THROUGH HOLE to be equivalent to CLIMB DOWN LADDER. The easiest answer here is
probably to remap the TravelVia of both ThroughPassages to the connectors we actually want employed:

+ ThroughPassage 'large hole' 'large hole'

"The hole is easily large enough for even a portly giant to pass through.
Looking through it you can see a large, rough cave below, 1lit by the flickering
flames of a torch. "

dobjFor (LookThrough) asDobjFor (Examine)

dobjFor (TravelVia) remapTo (TravelVia, downLadder)

+ ThroughPassage 'narrow tunnel' 'narrow tunnel’
"The tunnel evidently tapers from the outside to the inside, since
the end of the tunnel visible from here is quite narrow. "
dobjFor (TravelVia) remapTo (TravelVia, entranceTunnel);

’

Obviously, you should make sure that both these objects are located in entranceCave.

Page 28

2.14. DarkRoom

Since by the time we end up at the end of the tunnel north from the secret passage we're now some way from the
well-lit mainCave, it would not be surprising if we were now totally in the dark. We could simply override the brightness
property to be 0 in the smallCave, but instead we'll make it a DarkRoom, which does this for us (using the Room

template):

smallCave : DarkRoom 'Small Cave' 'the small cave'
"The long narrow tunnel from the south comes to an end in this cramped,
sandy-floored cave, whose rough rocky walls press in claustrophobically

on every side. Anyone much taller than average would have to stoop here. "

’

You can now compile the program and test it, but you'll quickly find that not only is there no way out of smallCave, but
there's as yet no way of bringing any light to it. While developing a game it would obviously be useful to be able to test
dark locations without necessarily having to use the methods the player will be obliged to use (either because you
simply haven't implemented them yet, or because you don't want to have to go through the business of procuring the
light source each time you want to test a new dark location). What would be useful is some way of producing light on
demand while testing, and the way to do that is to provide a means of adjusting the brightness property of the Player
Character object (i.e. allow the PC to be its own light source, so that it does not need to carry one). You could
download Nikos Chantziaras's ncDebugActions.t library extension and use that, since it provides a number of useful
debugging verbs, including MEGA and UNMEGA which (amongst other things) turns the player into a light source and
back again. If for any reason you have any difficulty in acquiring this file, (which you should be able to obtain from the
if-archive at http://www.ifarchive.org/indexes/if-archive XprogrammingXtads3XlibraryXcontributions.html) you can get a
similar effect by including the following in your own code, perhaps out of the way at the end of the file:

#ifdef _ DEBUG

DefineIAction (FiatLux)
execAction
{
if (gPlayerChar.brightness == 0)
{
"You start to glow!\n";
gPlayerChar.brightness = 3;
}
else
{
"Repeating the spell reverses its effect, and your glowing aura disappears. ";
gPlayerChar.brightness = 0;
}
}

’

VerbRule (FiatLux)

'fiat' 'lux'

: FiatLuxAction

verbPhrase = 'make/making light'
#endif

You don't have to call it Fiat Lux, of course, you can call it anything convenient you like, but whatever you call it it's
worth enclosing it between #ifdef _ DEBUG (note the double underscore before DEBUG) and #endif so that this
cheating verb won't be available in the release version of your game. In the debug version, however, you'll be able to
type FIAT LUX (or whatever you define the command to be) to make the player character a light source, and the same
command again to reverse the spell.

2.15. TravelMessage

Up to this point, you can get into the small cave but not out of it again. This time we won't explicitly mention the tunnel

Page 29

http://www.ifarchive.org/indexes/if-archiveXprogrammingXtads3XlibraryXcontributions.html

in the room description or implement it as an object, but we might want to mention the walk down the tunnel when the
PC travels south. The simplest way to do that is with a TravelMessage. We do not need to define this as a separate
object, it can simply be an anonymous nested object attached to the south property of smallCave:

smallCave : DarkRoom 'Small Cave' 'the small cave'

"The long narrow tunnel from the south comes to an end in this cramped,
sandy-floored cave, whose rough rocky walls press in claustrophobically
on every side. Anyone much taller than average would have to stoop here.

south : TravelMessage
{

-> secretPassage
"You walk south for quite some way down a long tunnel. ";

"

}

This time, we have used the TravelMessage template to simplify the definition here. The first template property here, -
> secretPassage, is in fact the destination property of the TravelMessage, while the second, the double-quoted
string, is its travelDesc property (defined on TravelWithDesc, from which TravelDesc inherits).

2.16. RoomAutoConnector

RoomAutoConnector is not a class that you're ever likely to use explicitly, but implicitly you'll probably use it a great
deal, since it is one of the classes from which Room inherits. It is RoomAutoConnector that provides the behaviour
that allows a Room to be used as a connector to itself. This may sound a little arcane, but in practice this is what
allows us to define travel between rooms without explicitly having to define any explicit TravelConnector objects
unless we need them for their side-effects. Since a Room is also a RoomAutoConnector, we can use as the value of
another Room's direction properties to implement direct travel between rooms. For example:

anotherCave: Room 'Another Cave'
"There's something artificial about this cave. It's almost as if it's trying
to be a room. The floor is suspiciously level, the walls are almost
smooth, and there's a smart new door set into the south wall, with a
bright electric light mounted above it. The rougher, larger central
cave lies to the north. "
north = mainCave

To make anotherCave reachable from mainCave, we must similarly add

south = anotherCave

to the definition of mainCave, which should now look like:

mainCave: Room 'Large Cave'
"The flickering orange light from the blazing torch fixed to the wall
accentuates the naturally ruddy hues of this large, irregular cave,
which seems to be something of a major hub in the cave system. A
large rock rests against the wall to the north, other caves lie
through exits to east and south, while the way west is blocked by
a huge boulder. A sturdy steel ladder leads up through a hole in the roof."
north = rock
south = anotherCave
up = uplLadder

2.17. Door

A basic door is easy to implement; here we'll illustrate a simple double-sided door by placing one between
anotherCave and a room to the south that we'll call lakeShore. We point the south property of anotherCave to one
side of the door (lakeDoor), the north property of lakeShore to the other side of the door (lakeDoor2) and make sure

Page 30

that one side of the door (lakeDoor2) points to the other side (lakeDoor) as its masterObject. Door inherits from
Passage and hence from Thing; we use the Thing template for lakeDoor and the Passage template for lakeDoor2:

anotherCave: Room 'Another Cave'
"There's something artificial about this cave. It's almost as if it's trying
to be a room. The floor is suspiciously level, the walls are almost
smooth, and there's a smart new door set into the south wall, with a
bright electric light mounted above it. The rougher, larger central
cave lies to the north. "
north = mainCave
south = lakeDoor

;
+ lakeDoor : Door 'smart new door' 'smart new door';

lakeRoom: Room 'Lake Shore'
"This is the northern shore of a giant underground lake. A door leads north. "
north = lakeDoor2

+ lakeDoor2 : Door ->lakeDoor 'door' 'door';

Later, we'll make this more interesting by adding a special kind of lock to the door.

2.18. BasicDoor

A BasicDoor encapsulates the behaviour common to both Door and SecretDoor and their descendents, and is thus
intended as an abstract class containing the common behaviour of door-like objects, rather than as a class that a
game author would use directly in a game. If you wanted to a special kind of door that didn't fit either Door or
SecretDoor (and their descendents) you might want to derive it from this class.

The framework provided by BasicDoor does the following:

¢ Provides a getFacets routine which makes both sides of a BasicDoor facets of each other (assuming one of the
doors points to the other as its other side).

¢ Overrided makeOpen to keep both sides of a BasicDoor in sync with each other when one side is opened or closed.

¢ Provides routines for noting and describing a remote opening of the door (to cope with the situation where a door is
opened or closed from the other side from that on which the player character is on).

¢ Provides handling for executing TravelVia the BasicDoor

¢ Boost the likelihood that this door is the object of commands like LOCK or CLOSE if this is the last door-like object
the PC has traversed.

2.19. NoTravelMessage

We have described the lakeShore room as being on the northern shore of a giant underground lake. This means that
it should be fairly apparent that the PC cannot proceed south. In this situation we may want to display a custom
message if the player nevertheless attempts to walk out onto the lake; a NoTravelMessage will perform this role (using
the NoTravelMessage template):

lakeRoom: Room 'Lake Shore'
"This is the northern shore of a giant underground lake. A door leads north. "
north = lakeDoor2
south : NoTravelMessage { "You never learnt to walk on water. " }
southeast asExit (south)
southwest asExit (south)

’

This is very similar to a FakeConnector. The only difference is a direction attached to a NoTravelMessage won't be
included in a list of exits (e.g. in response to an EXITS command, or in the status line), whereas that attached to a

Page 31

FakeConnector will. A NoTravelMessage should therefore be used to explain why travel is not possible in a direction
in which it's reasonably apparent that travel isn't possible, while a FakeConnector should be used to make travel
apparently possible in a direction in which it isn't really, e.g.. to provide a "soft boundary" to the map.

2.20. ExitOnlyPassage

An ExitOnlyPassage is designed for one-way travel into a room, the other side of a passage through which you can
pass but by which you cannot return. For example, imagine you have a slippery chute leading down from one cave to
another below it. In the upper cave the chute might be represented by a ThroughPassage that the Player Character
can enter; in the lower cave, the other end of the chute, which ejects the PC into the lower cave but can't be climbed
back up could be implemented as an ExitOnlyPassage. To illustrate this we'll add four more objects: a round cave to
the west of mainCave to act as the start of the chute, a long cave underneath to act as the destination of the chute,
and the two halves of the chute, one in each location:

roundCave : DarkRoom 'Round Cave' 'the round cave'
"This round, rocky cave has a narrow exit to the east and a strange square
hole in the floor. "
east = mainCave
down = squareHole

+ squareHole : TravelWithMessage, ThroughPassage 'square hole/chute' 'square hole'
"The hole is just about large enough for one person to fit through. A glint
of something metallic can be seen just through the hole. "
travelDesc = "You find yourself sliding down a long, slippery metal chute;
After a short ride you are ejected into another cave. "

’

longCave : DarkRoom 'Long Cave' 'the long cave'
"This long narrow cave runs from east to west between rough walls and
a low ceiling. There is a large square hole in the west wall, while
a ladder fixed to the wall at the east end runs up to a trapdoor
set in the ceiling. Some words have been crudely scratched on the
south wall. "
west : NoTravelMessage { "You can't climb back up the chute, it's

too slippery. " }

’

+ ExitOnlyPassage -> squareHole 'square hole/chute' 'square hole'
"Through the square hole you can see the bottom end of the shiny metal
chute, which is too slippery to climb back up. "

One other thing we need to add before this can be tested is

west = roundCave
to mainCave.

Note that we don't need to give the ExitOnlyPassage a name; we simply point it to the squareHole with the -> symbol
in the Passage template to connect the two halves of the chute together; in the Passage template the -> references
the masterObject property. Note also the use of a NoTravelMessage to explain why we can't climb back up the chute if
we try to go west, and of the TravelWithMessage mix-in class used with the ThroughPassage to provide a description
of the descent via the chute.

You can compile and run this, but you'll need to use MEGA or FIAT LUX to see what you're doing in the dark rooms.

2.21. AutoClosingDoor

So far we've provided a way of getting into the long cave, but no way of getting out. Let's suppose that the way back
up is also a one-way trip, via a trapdoor in the ceiling that closes each time you go through it. This would be a good
example of an AutoClosingDoor. The other (top) side of the trapdoor could be another ExitOnlyPassage, since we

Page 32

don't want to allow the trapdoor to be opened from the upper cave (we want to force the player to use the chute we've
so carefully implemented). We'll have the trapdoor open into yet another new room, a square cave to the east of
mainCave:

longCave : DarkRoom 'Long Cave' 'the long cave'
"This long narrow cave runs from east to west between rough walls and
a low ceiling. There is a large square hole in the west wall, while
a ladder fixed to the wall at the east end runs up to a trapdoor
set in the ceiling. Some words have been crudely scratched on the

south wall. "
west : NoTravelMessage { "You can't climb back up the chute, it's
too slippery. " }

up = longCavelLadder

+ ExitOnlyPassage -> squareHole 'square hole/chute' 'square hole'
"Through the square hole you can see the bottom end of the shiny metal
chute, which is too slippery to climb back up. "

+ longCaveladder: StairwayUp 'ladder' 'ladder'
"The ladder fixed to the east wall leads up to a trapdoor in the ceiling. "
dobjFor (TravelVia) remapTo (TravelVia, trapdoor)

+ trapdoor : AutoClosingDoor 'trap trapdoor/door' 'trapdoor';

squareCave : DarkRoom 'Square Cave' 'the square cave'
"This large square cave boasts a solitary exit to the west. "
west = mainCave

’

+ ExitOnlyPassage -> trapdoor 'trap trapdoor/door' 'trapdoor'
"You can hardly see the trapdoor from this side, and there is no means to
pull it open. "

The other thing to note here is the way we've handled the ladder. We've made it a StairwayUp to allow it to be
climbed, but it is actually the trapdoor rather than the ladder that must be traversed to reach the square cave above.
There's no easy way to make the trapdoor the destination of the ladder and the other side of the trapdoor the
destination of its underside. It's far easier to make traversing (i.e. climbing) the ladder equivalent to traversing (i.e.
going through) the trapdoor. However such actions may be described by the player (CLIMB LADDER, CLIMB UP
LADDER, ENTER TRAPDOOR, GO THROUGH TRAPDOOR) they'll end up being mapped to TravelVia actions
internally. We can therefore simply redirect a TravelVia action on the ladder to a TravelVia action on the trapdoor,
which we do using the dobjFor and remapTo macros.

Don't forget to add east = squareCave to the definition of mainCave. Then you can recompile and test the game
once more.

Here the trapdoor uses the Thing template and the ExitOnlyPassage the Passage template.

There’s another method on AutoClosingDoor, reportAutoClose(), which can be customised if we want an
AutoClosingDoor to report its automatic closing in anything other than the default way. Suppose, for example, that
when the player character goes through the trapdoor, instead of the standard "After you go through the trapdoor, it
closes behind you" we want it to say, "After you emerge through the trapdoor, it slams shut behind you". You can
achieve this by redefining the trapdoor thus:

+ trapdoor : AutoClosingDoor 'trap trapdoor/door' 'trapdoor'
reportAutoClose = "<.p>After {you/he} emerge{s} through the trapdoor, it slams
shut behind {it actor/him}. "

’

If you want an AutoClosingDoor to close silently (i.e. without any report at all), you can simply override
reportAutoClose() to do nothing.

Page 33

2.22. OneWayRoomConnector

Probably the most common use for a OneWayRoomConnector is to impose some kind of condition on traveling from
one room to a second (but not the other way, or at least not symmetrically, which would call for a RoomConnector). In
this situation a OneWayRoomConnector can be used as a nested anonymous object on one of the first room's
direction properties, its canTravelerPass method overridden to define the conditions under which travel is possible,
and its explainTravelBarrier method overridden to explain why travel isn't possible, if canTravelerPass disallows it.
Travel via the OneWayRoomConnector is allowed if canTravelerPass returns true and prevented if it returns nil. Only
in the latter case is canTravelerPass invoked to display the reason why travel has been blocked.

For example, the description of mainCave refers to a huge boulder blocking the exit to the west. Later, we'll implement
a way of removing this obstacle by blowing it up with a stick of dynamite - so this isn't an obstacle that can readily be
implemented as a SecretDoor, like the rock to the north. Instead, we could add a OneWayRoomConnector to check
whether the boulder is present, and simply disallow travel west if it is:

mainCave: Room 'Large Cave'

"The flickering orange light from the blazing torch fixed to the wall
accentuates the naturally ruddy hues of this large, irregular cave,
which seems to be something of a major hub in the cave system. A
large rock rests against the wall to the north, other caves lie
through an archway to the east and an opening to the south, while
<<boulder.moved ? 'a passage has been opened up to the west' : 'the
way west is blocked by a huge boulder'>>. A sturdy steel ladder leads
up through a hole in the roof. "

north = rock

south = anotherCave

west : OneWayRoomConnector

{
->roundCave
canTravelerPass (traveler) { return boulder.moved; }
explainTravelBarrier (traveler)
{ "The huge boulder is in the way. "; }

}

east = squareCave
up = uplLadder

’

+ boulder : Thing 'boulder' 'boulder'
initDesc = "The huge boulder is blocking the exit to the west.

’

In this case the OneWayRoomConnector template simply defines the -> property as the destination property, so -
>roundCave means that roundCave is where we end up when travel is allowed via this connector. Since the only way
into the roundCave is by going west from mainCave, we do not need to impose a similar check on travel the other way
round; although the boulder would prevent egress from roundCave to mainCave, while the boulder is in place the
player character cannot get into roundCave so the situation will never arise.

We have temporarily given a minimal definition of boulder simply as a Thing so that it can readily be removed to allow
access to the roundCave. We shall change this when we come to implement the means of blowing it up. Note the use
of initDesc to give an appropriate description of the boulder before it is moved, and the alteration to the room
description so that it changes when the boulder is removed.

2.23. PathPassage

A PathPassage is intended for use as an outdoor passage such as a road or path that is not enclosed. It is basically
the same as a ThroughPassage apart from the way that travel via it is described (when an actor other than the PC
goes along it). Another, and perhaps more interesting, feature of the PathPassage is that the English Language
extensions to the library understand the command TAKE PATH in the sense of 'walk along the path' instead of 'pick up
the path'. We can try this out by adding a short path along the side of the lake:

Page 34

lakeRoom: Room 'Lake Shore' 'the lake shore'
"This is the northern shore of a giant underground lake. A door leads north,
and a path runs a short way east. "
north = lakeDoor2
south : NoTravelMessage { "You never learnt to walk on water. " }
southeast asExit (south)
southwest asExit (south)
east = lakePath

+ lakeDoor2 : Door ->lakeDoor 'door' 'door';

+ lakePath : PathPassage 'short eastward rocky lakeside path' 'short lakeside path'
"The rocky path runs a short way along the side of the lake. "

’

pathEnd : OutdoorRoom 'End of Lakeside Path' 'the end of the path'
"The path from the west comes to an end just here, on the northern
shore of the great underground lake. "
west = lakePath2
south : NoTravelMessage { "The lake is in the way. " }

’

+ lakePath2 : PathPassage ->lakePath 'westward lakeside path' 'westward path'
"The path leads off along the shore of the lake to the west. "

’

If you compile and run the game, you should be able to type SOUTH, DOWN, SOUTH, SOUTH (as four separate
commands) to arrive at the lakeside. From there you can type TAKE PATH to travel to pathEnd. Typing TAKE PATH a
second time will return you to lakeRoom.

Note that PathPassage uses the same templates as Passage.

The PathPassage class provides a convenient opportunity to introduce another library feature, albeit one that's only
tangentially related. In English, the expression TAKE PATH can mean FOLLOW PATH (i.e. go down the path, travel
via the path), and hence the English language part of the library defines:

modify PathPassage
/* treat "take path" the same as "enter path" or "go through path" */
dobjFor (Take) maybeRemapTo (
gAction.getEnteredVerbPhrase == 'take (dobj)', TravelVia, self)

’

Note the problem this is intended to deal with: while TAKE PATH might mean FOLLOW PATH, GET PATH or PICK
UP PATH do not, and yet all three forms of the command will match TakeAction. It's true that the commands GET
PATH or PICK PATH UP don't make much sense, but it may still be a bit puzzling to players if they're treated as
instructions to wander down the path. What we need here is a means of distinguishing between TAKE PATH on the
one hand and GET PATH or PICK PATH UP on the other. In other words, we need to know what phrasing the player
used in actually issuing the command in this particular case, without going to the trouble of having to create a
separate GetAction which would be treated as equivalent to TakeAction in 98% of cases.

The library provides a solution to this in the form of an action method getEnteredVerbPhrase(). We can call this on
gAction to return a string containing the exact verb phrasing, but with the direct and (if present) indirect objects
replaced with the placeholder tokens '(dobj)' and '(obj)'. So, for an example, if the player had typed PUT BIG RED
BALL IN THE SMALL PLASTIC BUCKET, gAction.getEnteredVerbPhrase would return the string 'put (dobj) in (iobj)’,
which shows us the structure of the command used without worrying about the wording used to described the objects
involved, and without worrying about whether the player typed the command in lower case or upper case or a mixture
of the two, since getEnteredVerbPhrase returns a string converted entirely to lower case (if we actually wanted the full
original phrasing of the command we could use gAction.getOrigText() instead).

Page 35

2.24. Shipboard

Shipboard is a mix-in class that can be added to other room classes to indicate that shipboard directions (port,
starboard, fore and aft) are meaningful in such locations. Clearly, the principal use of this class will be when
constructing locations aboard a ship.

To illustrate the use of this class, we first need a ship. Fortunately, we already have a lake we can float it on, so we
can begin by defining it thus:

ship : Enterable ->portDeck 'large wooden sailing ship' 'ship' @lakeRoom
"It's a large wooden sailing ship, close enough to the shore to board.

n

specialDesc = "A large wooden ship floats on the lake, just by the shore. "
dobjFor (Board) asDobjFor (Enter)
getFacets { return [leaveShip]; }

’

There are a number of points to note about this short definition. The first is the use of the @ notation as an alternative
means of specifying the ship's initial location. Although the ship is notionally on the lake, we in fact place it in
lakeRoom since we want it to be visible and enterable from there (before it moves). However, since we always want
the ship to be described as floating on the lake, we add a specialDesc to that effect; this is how the ship will then
always be described when listed in room descriptions. Although the ship will not always remain in this location, it will
always be in some location close to the shore, and our description is sufficiently general to cover that. Next, a player is
as likely to type BOARD SHIP as ENTER SHIP in order to enter the vessel, so we add dobjFor(Board)
asDobjFor(Enter) to make BOARD equivalent to ENTER here. Finally, we'll assume that on boarding the ship we
arrive on the port deck, so we use the -> notation of the Enterable template to indicate that portDeck is the location
this Enterable takes us to. We'll explain the mysterious getFacets in just a minute.

We next need to define the portDeck location. Since there'll be several other deck locations, all of which will use the
Shipboard mix-in class, we can save ourselves a bit of typing if we first define a custom Deck class:

class Deck : Shipboard, OutdoorRoom;

We can then define the portDeck thus:

portDeck : Deck 'Port Deck' 'the main deck’
"This part of the main deck is on the port side of the ship, close to the shore. The
deck continues to fore, aft and starboard, and a tall mast towers up from
the middle of the main deck. "
fore = foreDeck
aft = quarterDeck
starboard = starboardDeck
out = (ship.location)
up = mast

’

We'll be defining the destinations referred to shortly; for now the only one to note is that attached to the out property.
This is set to (ship.location) so that whenever we type OUT from portDeck we'll end up in whatever location the ship
object is in; this provides an easy way of moving the entire ship. But of course, just as players may type BOARD SHIP
to enter the ship, they may also want to type LEAVE SHIP or GET OUT OF SHIP to disembark. The way to handle
this is to provide at EXITABLE object for SHIP to refer to in these circumstances:

+ leaveShip : Exitable ->(ship.location) 'ship' 'ship'
"It's a large wooden sailing vessel, which stretches fore, aft and to starboard of
the port deck. "
getFacets { return [ship]l; }

’

Note that (ship.location) needs to be enclosed in parentheses when using the template ->connector syntax here, since
it is an expression. Otherwise, the Exitable behaves pretty much the same way as the Enterable we encountered
before (except that it handles EXIT so-and-so instead of ENTER so-and-so). The main point to note here is the use of
the getFacets method. The point of this is that although they are separate programming objects, both ship and
leaveShip refer to the same physical object. In this case the two programming objects could be regarded as two
different facets of the same ship seen from the shore or from its port deck. The getFacets method, which returns a list
of the other facets of an object, is the means by which we can specify this relation to the parser. The practical effect of

Page 36

this is that the player can type BOARD SHIP followed by LEAVE IT, and the parser will be able to work out that IT
should now refer to the leaveShip object. Without the use of getFacets the LEAVE IT command would fail, since the
original ship would no longer be in scope to be the object of the LEAVE command, and would not handle the
command properly even if it were. Note that for doors and other passage-like objects that the library recognizes as
double-sided entities this getFacets mechanism is automatically set up by the library, so it is only in less standard
contexts such as the present one that game authors need to worry about it.

With these complications out of the way, the definition of the starboard part of the deck is fairly straightforward:

starboardDeck : Deck 'Starboard Deck' 'the main deck'

"From the starboard side of the ship there's a clear view over the lake as far as
the eye can see to starboard. The deck continues forward, aft and to port, and a
tall mast rises up from the centre of the main deck. "
port = portDeck
fore = foreDeck
aft = quarterDeck
up = mast

The foreDeck and quarterDeck would be even more straightforward but for one complication. The way we have
defined our ship, the main deck straddles its central portion and is divided into a port side and a starboard side. Going
aft from either side takes us to the quarterDeck, which going foreward from either side takes us to the foreDeck. So
where should we end up if we come aft from the foreDeck or forward from the quarterDeck? Clearly we should arrive
somewhere on the main deck, but should it be on the port or the starboard side? It could be either but there seems no
clear reason why it should be on or the other. One way to handle this is for travel aft from the foreDeck or forward from
the quarterDeck to bring the PC to either location, chosen at random on each location (which will also give the player
something else to figure out!). The neatest way to implement that is by using a OneWayRoomConnector that
produces this result:

mainDeck : OneWayRoomConnector
destination = (rand(portDeck, starboardDeck))

The definition of the other two deck sections then becomes straightforward:

foreDeck : Deck 'Fore Deck' 'the fore deck'
"The foredeck is at the front of the ship, overlooking the bows. Most of the
ship is aft from here. "
aft = mainDeck

’

quarterDeck : Deck 'Quarterdeck' 'the quarterdeck'
"The quarterdeck is a raised portion of the deck near the stern of the ship, and separated
from the deck further foreward by a wooden rail on which is mounted a panel. A flight
of steps leads down below. "
fore = mainDeck
down = deckSteps

+ deckSteps : StairwayDown 'flight steps' 'steps'
"The steps lead down into a cabin below. "
isPlural = true

That said, when the player goes fore from the quarterDeck, it will normally be with the intention of leaving the ship, via
the port deck. The random selection of destinations in this case will quickly become an annoyance, so it is probably
better to define:

quarterDeck : Deck 'Quarterdeck' 'the quarterdeck'
"The quarterdeck is a raised portion of the deck near the stern of the ship, and separated
from the deck further foreward by a wooden rail on which is mounted a panel. A flight
of steps leads down below. "
fore = portDeck
port = portDeck
starboard = starboardDeck
down = deckSteps

Page 37

Note: Shipboard and ShipboardRoom: prior to TADS 3.0.8 the class now called Shipboard was called
ShipboardRoom. The name was changed because Shipboard is a mix-in class designed to be used with Rooms, but
not actually a type of Room, so it seemed illogical to include Room in its name.

TADS 3 still defines a ShipboardRoom class (for convenience), but it now means something slightly different, being
defined simply as a combination of Shipboard and Room:

class ShipboardRoom : Shipboard, Room

’

2.25. FloorlessRoom

A FloorlessRoom, as its name suggests, is a location that lacks a floor, such as the top of a vertical shaft, or a tree.
The top of a mast, which is the sort of thing one would expect to find aboard ship, is another good example. Apart
from lacking a floor (something we'll discuss in more detail when we come to talk about roomParts) a FloorlessRoom
has the property that something dropped there does not remain there but drops out of sight either into oblivion, or into
other specified location (such as the bottom of the vertical shaft, tree or mast).

Before we can define the top of the mast we need to define its bottom. We'll assume the mast is located in the centre
of main deck, i.e. between portDeck and starboardDeck. It thus exists in both locations, which makes it an ideal
example of a MultiLoc:

mast : Multiloc, StairwayUp 'tall thick wooden mast' 'tall mast'
"The thick wooden mast towers up at least a hundred feet. "
locationList = [portDeck, starboardDeck]

’

We also make the mast a StairwayUp, since although it does not look much like a flight of stairs, it is something we
can climb to reach another location, and so it behaves like a StairwayUp. Note that the MultiLoc mix-in class must be
specified before the Thing-derived class (in this case StairwayUp) in the list of superclasses, and that its locationList
property contains a list of locations where the mast can be found.

We can now define the top of the mast as our FloorlessRoom example. The one thing we need to consider is how we
want to specify its bottomRoom property (the place where objects dropped here will end up). One would expect
something dropped from the top of the mast to fall to the deck below, but should it land in portDeck or starboardDeck?
Likewise, where should the PC fetch up when he or she descends the mast? This is precisely the same dilemma we
had when deciding how to proceed aft from foreDeck, so we can use precisely the same solution:

topOfMast : FloorlessRoom 'Top of Mast' 'the top of the mast'

"From the top of the mast you can see miles out across the lake to starboard
and the shore over to port. The deck below looks a sickeningly long way down. "
down = mainDeck
bottomRoom = (mainDeck.destination)

’

The result of this is that something dropped from the top of the mast has an equal chance of fetching up in portDeck or
starboardDeck (in a simpler situation we could simply have specified a single room as the value of the bottomRoom
property). In a moment or two you can test this out by picking up the boulder on the way to the ship and dropping it
from the top of the mast. But first we have one more task to complete, and that is to provide a mast object for the PC
to climb down from at the top of the mast. This should clearly by a StairwayDown, but the problem is that its
masterObject will be the MultiLoc mast object, so it won't be able to handle climbing down properly - indeed, unless
we do something about it we'll get a runtime error before we even try. The solution is to remap the StairwayDown's
TravelVia handling to the mainDeck connector:

+ StairwayDown ->mast 'mast' 'mast'
"Right now you're clinging to it for dear life. "
dobjFor (TravelVia) remapTo (TravelVia, mainDeck)

’

You should now be able to compile and run the game to test that everything is working correctly. When moving about
the deck you can abbreviate the PORT, STARBOARD, FORE and AFT commands to P, SB, F and A respectively.
Just don't try going down the steps from the quarterdeck yet.

Page 38

2.26. Floorless

Floorless is a mix-in class which adds Floorless behaviour to any Room class; that is it takes away the floor from the
list of room parts, and provides the handling for a dropped object to end up in another location.

Since the top of the mast is not exactly an (indoor) Room, in the sense of having four walls and a ceiling, it would be
better defined using a mix of Floorless and a more appropriate class:

topOfMast : Floorless, Deck 'Top of Mast' 'the top of the mast'

"From the top of the mast you can see miles out across the lake to starboard
and the shore over to port. The deck below looks a sickeningly long way down. "
down = mainDeck
bottomRoom = (mainDeck.destination)

Although the randomizing maindeck connector works fine, as you'll have seen if you've experiment with it, it is actually
not a very good idea in practice. Not only will the random connector be potentially confusing to players, when we
come to define an NPC who will follow the PC around, it can result in accidentally losing her (for example if the PC
goes south from the foredeck and the NPC tries to follow him, she may end up on the port deck and he on the
starboard, which is simply wrong if she's meant to be following him). Thus, once you've experimented with this random
connector (assuming you want to), | suggest you remove its random element and change it to:

mainDeck : OneWayRoomConnector
destination = portDeck

2.27. HiddenDoor

A HiddenDoor is a variation on SecretDoor, the difference being that while a SecretDoor is a visible object (like the
rock we used before) that is not apparently a door, a HiddenDoor isn't even visible until it's been opened. For our
example we'll create a section of the foreward bulkhead of the cabin that slides open at the press of a button. We'll go
about concealing the button in a later section.

First, however, we need to create the cabin:
class Cabin : ShipboardRoom, Room;

greatCabin : Cabin 'Great Cabin' 'the great cabin'

"The great cabin occupies the entire width of the ship at the stern. The stern
windows aft look out over the water, while there is a solid wooden bulkhead
foreward. The main piece of furniture is a sturdy wooden desk, while a flight of
steps leads up to the deck above. "
up = cabinSteps
fore = bulkheadDoor

’

+ cabinSteps : StairwayUp -> deckSteps 'flight steps' 'steps'
"The steps lead up to the deck above. "
isPlural = true

There is nothing new in this, apart from the creation of our custom Cabin class (which, along with the Deck class, we'll
shortly be customizing a little further). We can now define the HiddenDoor:

+ bulkheadDoor : HiddenDoor 'bulkhead door/doorway/opening' 'bulkhead door'
"The central section of the foreward bulkhead has slid open, revealing a
doorway through the bulkhead. "
destination = crewQuarters

We next need to provide a mechanism for opening it, which we'll make a button that, for now, is simply a Fixture in the
cabin:

Page 39

+ Button, Fixture 'small brown button' 'small brown button'
"The small brown button is fixed to the underside of the desk.
dobjFor (Push)
{
action ()

{

"

"There's a sharp <i>click</i>, and a section of the foreward bulkhead slides
<<bulkheadDoor.isOpen ? 'closed' : 'open'>>. ";
bulkheadDoor.makeOpen (!bulkheadDoor.isOpen) ;

}

The description of the button shows where we'll end up putting it, but that will come later. Finally, we need to define
another couple of rooms where we fetch up when we go through the HiddenDoor:

class DarkCabin : Cabin
brightness = 0

crewQuarters : DarkCabin 'Crew Quarters' 'the crew quarters'
"The crew quarters seem largely deserted. There's an exit back aft and a
ladder leading down into the hold. "
down = holdLadderDown
aft = greatCabin

’

+ holdLadderDown : StairwayDown 'ladder' 'ladder';

hold : DarkCabin 'Hold'
"The hold seems vast and cavernous, and is largely empty. A ladder leads
up through an open hatchway above. "
up = holdLadderUp

’

+ holdLadderUp : StairwayUp ->holdLadderDown 'ladder' 'ladder';

We could have defined DarkCabin as ShipboardRoom, DarkRoom; but by making it inherit from Cabin we ensure that
it inherits any further customizations we add to the Cabin class.

2.28. EntryPortal

An EntryPortal is just like an Enterable, except that you can go through it as well as enter it. It can be used, for
example, for an archway that is plainly the entrance to another destination:

mainCave: Room 'Large Cave'

"The flickering orange light from the blazing torch fixed to the wall
accentuates the naturally ruddy hues of this large, irregular cave,
which seems to be something of a major hub in the cave system. A
large rock rests against the wall to the north, other caves lie
through an archway to the east and an opening to the south, while
<<boulder.moved ? 'a passage has been opened up to the west' : 'the
way west 1s blocked by a huge boulder'>>. A sturdy steel ladder leads
up through a hole in the roof. "

north = rock
south = anotherCave
west : OneWayRoomConnector
{
->roundCave
canTravelerPass (traveler) { return boulder.moved; }
explainTravelBarrier (traveler)
{ "The huge boulder is in the way. "; }

Page 40

}
east = squareCave
up = upladder

+ EntryPortal ->squareCave 'arch/archway' 'archway'

"It's a large archway, leading to another cave beyond. "

’

The property pointed to by -> in the template is actually the connector traversed, not the destination reached, when
the EntryPortal is entered, although when, as here, the connector is a Room this has the same effect (see this
discussion of the distinction in connection with the Enterable class, from which EntryPortal inherits). Entry portal
inherits from Enterable and hence inherits the Enterable template.

2.29. ExitPortal

An ExitPortal is just like an Exitable, except that you can go through it as well as exit it. For example:

squareCave : DarkRoom 'Square Cave' 'the square cave'

"This capacious cave 1s unnaturally square, suggesting that it has been
artificially hewn out of the rock, an impression further enhanced by
the carefully-constructed ashlar archway to the west. "

west = mainCave

out asExit (west)

’

+ ExitPortal -> mainCave 'ashlar arch/archway' 'archway'
"The archway is beautifully constructed from dressed stones.

ANY

Note that ExitPortal is not a travel connector; -> mainCave makes mainCave its connector property, not its
masterObject property. For the distinction, see further on the Enterable class. The template used here is the Exitable

template.

2.30. TravelBarrier

In all the examples we have used so far, when we have wanted to prevent travel via a TravelConnector, we have
overridden its canTravelerPass method to determined whether travel is permitted, and its explainTravelBarrier method
to explain why travel is forbidden (if it is forbidden). Normally this is the simplest and most convenient way to do it - but
there is another way, and that is to use TravelBarrier object.

A TravelBarrier is simply an object that defines canTravelerPass and explainTravelBarrier methods. A single
TravelBarrier, or a list of TravelBarriers, can be attached to a TravelConnector via its travelBarrier property. This can
be useful in a number of cases.

The first case is when a specialized type of TravelBarrier, such as the PushTravelBarrier, is required.

The second case is where you want to enforce the same barrier conditions on a number of different TravelConnectors.
Rather that write the same canTravelerPass and explainTravelBarrier methods on two or more TravelConnectors, you
can define them once on a TravelBarrier object then attach the object to each of the TravelConnectors to which it
applies. For example, suppose you want to prevent the player traveling either north or east from a particular location
without the lamp, you could define:

lampBarrier : TravelBarrier
canTravelerPass (traveler) {return lamp.isIn(traveler); }
explainTravelBarrier (traveler} { "You forgot the lamp! "; }

Page 41

’

Then, on the relevant location you could define:

north : OneWayRoomConnector { -> darkPassage travelBarrier = lampBarrier }
east : OneWayRoomConnector { -> darkCorridor travelBarrier = lampBarrier }
south = lampRoom

The third case is where you want to perform a number of separate checks, each of which would result in a different
failure message. Rather than write a long switch statement or series of if statements in the explainTravelBarrier
method of the TravelConnector, you could define a number of TravelBarrier objects that pair the condition with the
message. For example, supposing that at another point in your journey, you want not only to enforce the condition that
the player has the lamp, as above, but also that he's not wearing the stolen jacket. You might then define another
TravelBarrier object:

jacketBarrier : TravelBarrier
canTravelerPass (traveler) {return !jacket.isWornBy (traveler); }
explainTravelBarrier (traveler) { "You'll stand out a mile wearing Lord Ponsonby's jacket in
there! "; }

Then you can attach both TravelBarriers to the same connector:

in : OneWayRoomConnector { -> pompousClubLobby
travelBarrier = [lampBarrier, jacketBarrier]

}

What happens is that among the checks carried out in the checkDobjTravelVia method of a TravelConnector is a call
to checkTravelBarriers; this first checks the canTravelerPass method of the TravelConnector itself, then works through
the list of TravelBarriers (if any) in the travelBarrier property, calling each of their canTravelerPass methods in turn. If
any of these canTravelerPass methods returns nil, the travel is aborted and the corresponding explainTravelBarrier
method is called.

2.31. AskConnector

The normal IF convention assumes that there is only one exit in any given compass direction. But what happens if you
want to model a situation where there are two, or three, or half a dozen, such as a north wall in which there are
several doors? You could, of course, simply attach a FakeConnector to the north property of such a location and have
it display a message telling the player to select a door to go through instead, but a better solution would be to use an
AskConnector. This is an "ask which" travel connector. Rather than just traversing the connector, we ask for a direct
object for a specified travel verb; if the player supplies the missing indirect object (or if the parser can automatically
choose a default), we'll perform the travel verb using that direct object.

AskConnector defines the following properties:

e promptMessage - An extra prompt message to show before the normal parser prompt for a missing or ambiguous
object. We'll show this just before the normal parser message, if it's specified. If you want to customize the
messages more completely, you can override askDisambig() or askMissingObject(). The parser will invoke these to
generate the prompt, so you can customize the entire messages by overriding these.

o travelAction - The specific travel action to attempt. This must be a TAction - an action that takes a direct object
(and only a direct object). The default is TravelVia, but this should usually be customized in each instance to the
type of travel appropriate for the possible connectors.

¢ travelObjs - The list of possible direct objects for the travel action. If this is nil, we'll simply treat the direct object of
the travelAction as completely missing, forcing the parser to either find a default or ask the player for the missing
object. If the travel is limited to a specific set of objects (for example, if there are two doors leading north, and we
want to ask which one to use), this should be set to the list of possible objects; the parser will then use the
ambiguous noun phrase rules instead of the missing noun phrase rules to ask the player for more information.

e travelObjsPhrase - The phrase to use in the disambiguation question to ask which of the travelObjs entries is to be
used. The language-specific module provides a suitable default, but this should usually be overridden if travelObjs is
overridden.

Page 42

Here's an example of an AskConnector when there are two doors in the south wall.

stonelanding : Room 'Landing' 'the landing'

"A pair of doors lead south from this narrow landing, from which
a narrow flight of stone steps lead down to the north. "

down = slStairsDown

north asExit (down)

south : AskConnector
{
promptMessage = "There are two doors you could go through to the south . "
travelAction = GoThroughAction
travelObjs = [leftDoor, rightDoor]
travelObjsPhrase = 'of them'
}

+ leftDoor : Door 'left hand door*doors' 'left hand door'

+ rightDoor : Door 'right hand door*doors' 'right hand door'

’

Now, if you arrive at this destination and type the command SOUTH the parser will respond with "There are two doors
you could go through to the south. Which of them do you mean, the right hand door, or the left hand door?" Of course,
right now there's no way of reaching this location; we'll eventually provide it when we come to look at Consultable.

2.32. TravelConnector

TravelConnector is the base class from which all the connectors we have been looking at ultimately derive. You will
probably not define any objects of the TravelConnector class (as opposed to one of its subclasses) in your games,
since a raw TravelConnector doesn't actually lead anywhere. It's possible that you might define your own subclass of
TravelConnector for some particular purpose, or you could use a TravelConnector object in your game and override,
say, its actionDobjTravelVia method or its getDestinationMethod to produce the result you want (though in most cases
you'll probably want to use one of its subclasses rather than reinventing a wheel that's already in the library).

The main importance of TravelConnector, however, is that it defines a large number of the properties and methods
used on all its subclasses. These are listed below for the sake of reference, using descriptions taken from the
comments in the library code:

Properties:

connectorStagingLocation: The "staging location” for travel through this connector. By default, if we have a
location, that's our staging location; if we don't have a location (in which case we probably an outermost room), we
don't have a staging location.

isCircularPassage: Is this a "circular" passage? A circular passage is one that explicitly connects back to its origin,
so that traveling through the connector leaves us where we started. When a passage is marked as circular, we'll
describe travel through the passage exactly as though we had actually gone somewhere. By default, if traveling
through a passage leaves us where we started, we assume that nothing happened, so we don't describe any travel.
Circular passages don't often occur in ordinary settings; these are mostly useful in disorienting environments, such as
twisty cave networks, where a passage between locations can change direction and even loop back on itself.

isConnectorListed: Is this connector listed? This indicates whether or not the exit is allowed to be displayed in lists
of exits, such as in the status line or in "you can't go that way" messages. By default, all exits are allowed to appear in
listings.

Note that this indicates if listing is ALLOWED - it doesn't guarantee that listing actually occurs. A connector can be
listed only if this is true, AND the point-of-view actor for the listing can perceive the exit (which means that
isConnectorApparent must return true, and there must be sufficient light to see the exit).

travelBarrier: Barrier or barriers to travel. This property can be set to a single TravelBarrier object or to a list of
TravelBarrier objects. checkTravelBarriers() checks each barrier specified here.

Page 43

travelMemory: Our "travel memory" table. If this contains a non-nil lookup table object, we'll store a record of each
successful traversal of a travel connector here - we'll record the destination keyed by the combination of actor, origin,
and connector, so that we can later check to see if the actor has any memory of where a given connector goes from a
given origin. * We keep this information by default, which is why we statically create the table here. Keeping this
information does involve some overhead, so some authors might want to get rid of this table (by setting the property to
nil) if the game doesn't make any use of the information. Note that this table is stored just once, in the
TravelConnector class itself - there's not a separate table per connector.

Methods:

actorTravelPreCond (actor): Get the travel preconditions that this connector requires for travel by the given actor. In
most cases, this won't depend on the actor, but it's provided as a parameter anyway; in most cases, this will just apply
the conditions that are relevant to actors as travelers.

By default, we require actors to be "travel ready" before traversing a connector. The exact meaning of "travel ready" is
provided by the actor's immediate location, but it usually simply means that the actor is standing. This ensures that the
actor isn't sitting in a chair or lying down or something like that. Some connectors might not require this, so this routine
can be overridden per connector.

Note that this will only be called when an actor is the traveler. When a vehicle or other kind of traveler is doing the
travel, this will not be invoked.

canTravelerPass (traveler): Check to see if the Traveler object is allowed to travel through this connector. Returns
true if travel is allowed, nil if not.

This is called from checkTravelBarriers() to check any conditions coded directly into the TravelConnector. By default,
we simply return true; subclasses can override this to apply special conditions.

If an override wants to disallow travel, it should return nil here, and then provide an override for explainTravelBarrier()
to provide a descriptive message explaining why the travel isn't allowed.

Conditions here serve essentially the same purpose as barrier conditions. The purpose of providing this additional
place for the same type of conditions is simply to improve the convenience of defining travel conditions for cases
where barriers are unnecessary. The main benefit of using a barrier is that the same barrier object can be re-used with
multiple connectors, so if the same set of travel conditions apply to several different connectors, barriers allow the
logic to be defined once in a single barrier object and then re-used easily in each place it's needed. However, when a
particular condition is needed in only one place, creating a barrier to represent the condition is a bit verbose; in such
cases, the condition can be placed in this method more conveniently.

checkTravelBarriers (dest): Check barriers. The TravelVia check() routine must call this to enforce barriers.

connectorBack (traveler, dest): Find a connector in the destination location that connects back as the source of
travel from the given connector when traversed from the source location. Returns nil if there is no such connector.
This must be called while the traveler is still in the source location; we'll attempt to find the connector back to the
traveler's current location.

The purpose of this routine is to identify the connector by which the traveler arrives in the new location. This can be
used, for example, to generate a connector-specific message describing the traveler's emergence from the connector
(so we can say one thing if the traveler arrives via a door, and another if the traveler arrives by climbing up a ladder).
By default, we'll try to find a travel link in the destination that links us back to this same connector, in which case we'll
return 'self' as the connector from which the traveler emerges in the new location. Failing that, we'll look for a travel
link whose apparent source is the origin location. This should be overridden for any connector with an explicit
complementary connector. For example, it is common to implement a door using a pair of objects, one representing
each side of the door; in such cases, each door object would simply return its twin here. Note that a complementary
connector doesn't actually have to go anywhere, since it's still useful to have a connector back simply for describing
travelers arriving on the connector.

This must be overridden when the destination location doesn't have a simple connector whose apparent source is this
connector, because in such cases we won't be able to find the reverse connector with our direction search.

connectorGetConnectorTo (origin, traveler, dest): Get the travel connector leading to the given destination from

the given origin and for the given travel. Return nil if we don't know a connector leading there.

By default, we simply return 'self' if our destination is the given destination, or nil if not.

Some subclasses might encapsulate one or more "secondary" connectors - that is, the main connector might choose
among multiple other connectors. In these cases, the secondary connectors typically won't be linked to directions on

their own, so the room can't see them directly - it can only find them through us, since we're effectively a wrapper for
the secondary connectors. In these cases, we won't have any single destination ourself, so getDestination() will have
to return nil. But we can work backwards: given a destination, we can find the secondary connector that points to that
destination. That's what this routine is for.

connectorTravelPreCond (): Get any connector-specific pre-conditions for travel via this connector.

Page 44

createUnlistedProxy () : Get an unlisted proxy for this connector. This is normally called from the asExit () macro
to set up one room exit direction as an unlisted synonym for another.

darkTravel (actor, dest): Handle travel in the dark. Specifically, this is called when an actor attempts travel from one
dark location to another dark location. (We don't invoke this in any other case: light-to-light, light-to-dark, and dark-to-
light travel are all allowed without any special checks.)

By default, we will prohibit dark-to-dark travel by calling the location's darkTravel handler. Individual connectors can
override this to allow such travel or apply different handling.

describeArrival (traveler, origin, dest): Describe an actor's arrival through the connector from the given origin into
the given destination. This description is from the point of view of another actor in the destination.

Note that this is called on the connector that reverses the travel, NOT on the connector the actor is actually traversing
- that is, 'self' is the backwards connector, leading from the destination back to the origin location. So, if we have two
sides to a door, and the actor traverses the first side, this will be called on the second side - the one that links the
destination back to the origin.

describeDeparture (traveler, origin, dest): Describe an actor's departure through the connector from the given
origin to the given destination. This description is from the point of view of another actor in the origin location.

describeLocalArrival (traveler, origin, dest): Describe a "local arrival" via this connector. This is called when the
traveler moves around entirely within the field of view of the player character - that is, the traveler's origin is visible to
the player character when we arrive in our destination. We'll describe the travel not in terms of arriving, since the
traveler was already here to start with, but rather as entering the destination.

dobjFor (TravelVia): Action handler for the internal "TravelVia" action. This is not a real action, but is instead a
pseudo-action that we implement generically for travel via the connector. Subclasses that want to handle real actions
by traveling via the connector can use remapTo(TravelVia) to implement the real action handlers. Note that remapTo
should be used (rather than, say, asDobjFor), since this will ensure that every type of travel through the connector
actually looks like a TravelVia action, which is useful for intercepting travel actions generically in other code.

explainTravelBarrier (traveler): Explain why canTravelerPass() returned nil. This is called to display an explanation
of why travel is not allowed by self.canTravelerPass().

Since the default canTravelerPass() always allows travel, the default implementation of this method does nothing.
Whenever canTravelerPass() is overridden to return nil, this should also be overridden to provide an appropriate
explanation.

fixedSource (dest, traveler) Get the "fixed" source for travelers emerging from this connector, if possible. This can
return nil if the connector does not have a fixed relationship with another connector.

The purpose of this routine is to find complementary connectors for simple static map connections. This is especially
useful for direct room-to-room connections.

When a connector relationship other than a simple static mapping exists, the connectors must generally override
connectorBack(), in which case this routine will not be needed (at least, this routine won't be needed as long as the
overridden connectorBack() doesn't call it). Whenever it is not clear how to implement this routine, don't - implement
connectorBack() instead.

getApparentDestination (origin, actor): Get the apparent destination of travel by the actor to the given origin. This
returns the location to which the connector travels, AS FAR AS THE ACTOR KNOWS. If the actor does not know and
cannot tell where the connector leads, this should return nil.

Note that this method does NOT necessarily return the actual destination, because we obviously can't know the
destination for certain until we traverse the connection. Rather, the point of this routine is to return as much
information as the actor is supposed to have. This can be used for purposes like auto-mapping, where we'd want to
show what the player character knows of the map, and NPC goal-seeking, where an NPC tries to figure out how to get
from one point to another based on the NPC's knowledge of the map. In these sorts of applications, it's important to
use only knowledge that the actor is supposed to have within the parameters of the simulation.

Callers should always test isConnectorApparent() before calling this routine. This routine does not check to ensure
that the connector is apparent, so it could return misleading information if used independently of
isConnectorApparent(); for example, if the connector formerly worked but has now disappeared, and the actor has a
memory of the former destination, we'll return the remembered destination.

The actor can know the destination by a number of means:

1. The location is familiar to the character. For example, if the setting is the character's own house, the character
would obviously know the house well, so would know where you'd end up going east from the living room or south
from the kitchen. We use the origin method actorKnowsDestination() to determine this.

2. The destination is readily visible from the origin location, or is clearly marked. For example, in an outdoor setting, it

Page 45

might be clear that going east from the field takes you to the hilltop. In an indoor setting, an open passage might make
it clear that going east from the living room takes you to the dining room. We use the origin method
actorKnowsDestination() to determine this.

3. The actor has been through the connector already in the course of the game, and so remembers the connection by
virtue of recent experience. If our travelMemory class property is set to a non-nil lookup table object, then we'll
automatically use the lookup table to remember the destination each time an actor travels via a connector, and use
this information by default to provide apparent destination information.

getDestination (origin, traveler): Get our destination, given the traveler and the origin location.

This method is required to return the current destination for the travel. If the connector doesn't go anywhere, this
should return nil. The results of this method must be stable for the extent of a turn, up until the time travel actually
occurs; in other words, it must be possible to call this routine simply for information purposes, to determine where the
travel will end up.

This method should not trigger any side effects, since it's necessary to be able to call this method more than once in
the course of a given travel command. If it's necessary to trigger side effects when the connector is actually traversed,
apply the side effects in noteTraversal().

For auto-mapping and the like, note that getApparentDestination() is a better choice, since this method has internal
information that might not be apparent to the characters in the game and thus shouldn't be revealed through
something like an auto-map. This method is intended for internal use in the course of processing a travel action, since
it knows the true destination of the travel.

Note that on the TravelConnector class this method simply returns nil, which is why a raw TravelConnector won't get
you anywhere. This method is overridden on subclasses to do something more useful.

isConnectorApparent (origin, actor): Determine if the travel connection is apparent - as a travel connector - to the
actor in the given origin location. This doesn't indicate whether or not travel is possible, or where travel goes, or that
the actor can tell where the passage goes; this merely indicates whether or not the actor should realize that the
passage exists at all.

A closed door, for example, would return true, because even a closed door makes it clear that travel is possible in the
direction, even if it's not possible currently. A secret door, on the other hand, would return nil while closed, because it
would not be apparent to the actor that the object is a door at all.

isConnectorPassable (origin, traveler): Determine if the travel connection is passable by the given traveler in the
current state. For example, a door would return true when open, nil when closed.

This information is intended to help game code probing the structure of the map. This information is NOT used in actor
travel; for actor travel, we rely on custom checks in the connector's TravelVia handler to enforce the conditions of
travel. Actor travel uses TravelVia customizations rather than this method because that allows better specificity in
reporting failures. This method lets game code get at the same information, but in a more coarse-grained fashion.

isConnectorVisiblelnDark (origin, actor): Can the given actor see this connector in the dark, looking from the given
origin? Returns true if so, nil if not.

This is used to determine if the actor can travel from the given origin via this connector when the actor (in the origin
location) is in darkness.

By default, we implement the usual convention, which is that travel from a dark room is possible only when the
destination is lit. If we can't determine our destination, we will assume that the connector is not visible.

noteTraversal (traveler): Note that the connector is being traversed. This is invoked just before the traveler is
moved; this notification is fired after the other travel-related notifications (beforeTravel, actorTravel, travelerLeaving).
This is a good place to display any special messages describing what happens during the travel, because any
messages displayed here will come after any messages related to reactions from other objects. (By default this
method does nothing, and can be freely overridden with your own code; note, however, that it is overridden by the
library in TravelWithMessage, and hence in the subclasses of TravelWithMessage, such as TravelMessage,
NoTravelMessage, and FakeConnector, as well).

rememberTravel (origin, actor, dest): Service routine: add a memory of a successful traversal of a travel connector.
If we have a travel memory table, we'll add the traversal to the table, so that we can find it later.

This is called from Traveler.travelerTravelTo() on successful travel. We're called for each actor participating in the
travel.

Page 46

2.33. Room Methods and Properties

2.33.1. roomXxxxAction

We have now explored all the main types of Room and TravelConnector in the standard library that an author is likely
to use (we have not included classes such as BasicLocation, Passage and Stairway that are unlikely to be used
directly, since one would normally use one of their subclasses). But before leaving the topic of rooms it may be worth
looking at one or two of the methods and properties that can be overridden on them to customise their behaviour.

We have already seen how to customise the atmosphereList and brightness properties, so we shall start with the
roomAfterAction and roomBeforeAction methods. These are called on the room object whenever an action is
performed within that room, either after or before the action. In addition, the roomBeforeAction can abort an action by
calling the exit macro. As ever, this is probably best illustrated by means of an example, which we'll provide by adding
roomBeforeAction and roomAfterAction methods to the Cabin class:

class Cabin : ShipboardRoom, Room

roomBeforeAction ()
{

if (gActionIs (Jump))

{

"{You/he} had better not try jumping here, {you/he} might hit
{your} head on the deck beams. ";
exit;

}

}

roomAfterAction

{
if (gActionIn (Look, Examine))
{
"\nThe ship creaks ominously.\n";
}
t

’

The gActionls macro tests for the action that is about to be performed in the room. If the Player Character attempts to
jump in the cabin he or she is warned that doing so might result in a collision of head and deck beams and the action
is aborted. We use the parameter substitution syntax ({You/he} etc.) to deal with the possibility that an NPC is made
to jump in the cabin. The gActionln macro tests for an action matching any of the actions in a list; we use it in
roomAfterAction, which tests for either a LOOK or an EXAMINE command being performed, and then displays a
message about the ship creaking after the results of the LOOK or EXAMINE. This example is somewhat contrived,
and one would probably use some other method to describe the creaking of the ship (although this one may well do
well enough) or else have roomAfterAction call the doScript method of an EventList object to vary the message
displayed, but the example will suffice to give the general idea. If you like, you can compile and run the game to see
what happens in a cabin when you try to JUMP, LOOK or EXAMINE there.

Perhaps the most important point to remember here is to use the roomAfterAction and roomBeforeAction methods for
this type of effect; using afterAction or beforeAction on a Room doesn't work.

Note also that in the above code snippet I've put brackets after roomBeforeAction () but not after roomAfterAction.
Where a method takes no parameters either is correct (brackets or no brackets) and it makes no difference which you
use.

2.33.2. roomParts

For a normal Room the library supplies a defaultFloor, defaultCeiling and four defaultWalls which provide a default
"You see nothing special about the floor/ceiling/wall* message if examined. An OutdoorRoom simply has a
defaultGround and defaultSky which perform the same function. These objects are listed in the roomParts property of
the respective classes, so that they are always available to be examined in any Room or OutdoorRoom. This property
can always be overridden, however, if you want more specific or appropriate roomParts for individual Rooms or
classes of Room. For example, we may define some roomParts more appropriate to the Deck of our ship on its
subterranean lake:

defaultDeck : Floor 'deck/ground/floor' 'deck'
"The deck is made of close-fitting wooden planks. "

Page 47

putDestMessage = &putDestFloor

’

caveSky : RoomPart 'roof/ceiling' 'ceiling'
"The dark roof of the cave, a long way up, dimly reflects the
rippling green light from the lake. "

class Deck : ShipboardRoom, OutdoorRoom
roomParts = [defaultDeck, caveSky]

Note that rooms should generally have one and only one roomPart that represents the floor of the room, which must
be of class Floor; the main exception here is any room that is meant to be floorless, such as a FloorlessRoom or a
room defined with the Floorless mix-in class. Since we have made the top of the mast a Floorless, Deck, changing the
room parts of Deck leaves the top of the mast with caveSky as its only roomPart, which is, in fact, just what we want.
We could have achieved precisely the same result by defining:

topOfMast : FloorlessRoom 'Top of Mast' 'the top of the mast'

"From the top of the mast you can see miles out across the lake to starboard
and the shore over to port. The deck below looks a sickeningly long way down.
down = mainDeck
bottomRoom = (mainDeck.destination)
roomParts = [caveSky]

The defaultDeck and defaultCeiling will serve well enough for a Cabin, but it is hardly appropriate for a Cabin to have
the north, south, east and west walls found by default in a Room, so we need to provide a new set of roomParts:

defaultForeBulkhead : RoomPart 'f fore foreward bulkhead/wall*walls' 'foreward bulkhead';
defaultAftBulkhead : RoomPart 'a aft bulkhead/wall*walls' 'aft bulkhead';
defaultPortWall : RoomPart 'p port wall*walls' 'port wall';

defaultStarboardWall : RoomPart 'sb starboard wall*walls' 'starboard wall';

class Cabin : ShipboardRoom, Room

roomBeforeAction ()
{

if (gActionIs (Jump))

{

"{You/he} had better not try jumping here, {you/he} might hit
{your} head on the deck beams. ";
exit;

}

}

roomAfterAction

{
if (gActionlIs (Look))

{

"\nThe ship creaks ominously.\n";
}

}
roomParts = [defaultDeck, defaultCeiling, defaultForeBulkhead, defaultAftBulkhead,

defaultPortWall, defaultStarboardWall]

’

The other change made here is to remove the gActionls(Examine) from the roomAfterAction, since otherwise the
creaking message will mask the default "You see nothing special about it" response to an attempt to examine these
default cabin parts.

In the greatCabin, however, even some of these specialised roomParts may not be entirely appropriate, since the aft
bulkhead is taken up with a window and the foreward one may have a special opening revealed by the press of a
button. We can thus further customise the roomParts for this particular room:

greatCabinForeBulkhead : defaultForeBulkhead
desc = "The foreward bulkhead is made of polished oak planks.
<<bulkheadDoor.isOpen ? bulkheadDoor.desc : nil>> "

Page 48

’

greatCabinAftBulkhead : defaultAftBulkhead
desc = "The aft wall of the cabin is pierced by a series of windows across
most of its width. "

’

greatCabin : Cabin 'Great Cabin' 'the great cabin'

"The great cabin occupies the entire width of the ship at the stern. The stern
windows aft look out over the water, while there is a solid wooden bulkhead
foreward. The main piece of furniture is a sturdy wooden desk, while a flight of
steps leads up to the deck above. "
up = cabinSteps
fore = bulkheadDoor
roomParts = static inherited - defaultAftBulkhead - defaultForeBulkhead

+ greatCabinAftBulkhead + greatCabinForeBulkhead

’

There's a couple of points to note here: the first is that we can make our specialised room parts inherit from their
corresponding default objects; this avoids the need to specify the vocabulary and name properties all over again. The
second is the use of the static and inherited keywords to adjust the list of roomParts from that specified in the Cabin
class (rather than having to list the whole lot again). We use static since the list of roomParts will never be changed
during the game, so the expression that follows the static keyword can be resolved at compile time rather than being
evaluated when the game is run.

There's also a couple of points to note about roomParts in general. The main one is that the library apparently expects
them to remain fixed throughout the duration of the game, which will normally be the case (most rooms with four walls,
a floor and a ceiling tend to keep them). There may, however, be odd occasions when you want to change the list of
room parts in a particular location during the course of a game: perhaps you blow a hole in one of the walls, or the
ceiling collapses, or the floor gives way. The thing to note there is that if you want to remove a room part from a room
during the course of the game you need to remove it both from the locations roomParts list and its contents list. For
example, if the main bathroom's ceiling is blown away in a hurricane, you'd need to write something like:

mainBathroom.roomParts -= defaultCeiling;
mainBathroom.contents -= defaultCeiling;

Similarly, if you want to add a room part to a location dynamically during the course of a game you'll need to add it
both to the location's roomParts list and to its contents list. The reason for this that Room's initialize Thing method
appends the location's roomParts list to its contents list, but the library provides no automatic means of maintaining
this link thereafter.

Where a room has custom room part that you want to add or remove dynamically, prior to TADS 3.0.9 it might be
simpler not to include it in the roomParts list at all. The alternative would be simply to place it in its room using the
location property in the normal way, for example:

bathroomCeiling: RoomPart 'ceiling' 'ceiling' @mainBathroom
"It's full of cracks and looks like it wouldn't take much to make it collapse altogether.

Then, when the bathroom ceiling finally does collapse, all you need to write is:

bathroomCeiling.moveInto (nil) ;

Of course, if you do this, you need to remember to exclude defaultCeiling from the list of roomParts when you define
mainBathroom. A further consideration is that although it's reasonably easy to cope with custom walls and ceilings this
way, custom floors are a different matter: the library expects the floor (or ground) of a room to be among its
roomParts, and although this behaviour can be overridden on a given room (e.g. by overriding its roomFloor property),
it's probably simplest to stick to this rule.

The methods movelntoAdd(room) and moveOutOf(room) provide a possibly neater alternative. With these methods
you can include bathroomCeiling in the bathroom's roomParts property in the normal way, and when the ceiling
collapses simply call:

bathroomCeiling.moveOutOf (bathroom) ;

If the ceiling were subsequently repaired you could reverse this by calling:

Page 49

bathroomCeiling.moveIntoAdd (bathroom) ;

This leads on to a more general point: where you want to use customised walls and ceilings (and possibly even floors)
in a given location, it's always possible to by-pass the roomParts mechanism altogether and simply make your
customised room parts ordinary Fixtures located in the room. If you do this, it's probably better to use the RoomPart
class for them than the Fixture class (since the RoomPart class contains some specializations that make better sense
for things like walls and ceilings), and you still have to remember to remove the default room part equivalents from the
location's roomParts list when you define the room, or you could end up with, say, two west walls, the default one and
your custom one.

For this reason, it's probably easier to get into the habit of always putting room parts - even custom ones - into their
location's roomParts list. This way you're much more likely to remember to remove the corresponding default room
part, and you also make sure you take advantage of the library's specialized handling of room parts. For example, if
you define a custom ceiling for one location, and then find it would suit another just as well, it's probably easier to add
it to the roomParts list of both locations than to make into a Multilnstance object.

2.33.3. cannotGoThatWay

BasicLocation.cannotGoThatWay is called whenever an actor (usually the PC) attempts travel in a direction that is not
currently available (except in the dark, when cannotGoThatWaylnDark is used instead). By default this simply displays
a message saying you can't go that way, and listing the exits that are available from the current location. There may
be occasions, however, when you'd like a different message displayed.

Consider our shipboard locations, the Decks and Cabins. Just as a shipboard direction such as PORT or AFT is that
meaningful on dry land, we may feel that compass directions such as NORTH or SW are not that relevant to moving
around a ship. We could therefore override the cannotGoThatWay method of Deck to display a more appropriate
message when travel in a compass direction is attempted:

class Deck : ShipboardRoom, OutdoorRoom
roomParts = [defaultDeck, caveSky]
cannotGoThatWay ()

{

if (gAction.parentAction.dirMatch.dir.ofKind (CompassDirection))
"Compass directions aren't that useful for getting about ship;
try fore, aft, port and starboard instead. ";
else
inherited;

’

The complicated part here is getting at what kind of direction the player typed, but the above seems to work. The easy
part is extending this behaviour to the Cabin class; simply make Cabin inherit from Deck instead of from
ShipboardRoom and Room. Since Deck inherits from ShipboardRoom and OutdoorRoom, the only difference between
Room and OutdoorRoom is the list of roomParts, and Cabin overwrites roomParts anyway, this change is perfectly
safe.

More generally, if you want to provide custom "Can't go that way" in a number of different locations, you may just need
to provide a cannotGoThatWayMsg:

squareCave : DarkRoom 'Square Cave' 'the square cave'

"This capacious cave 1is unnaturally square, suggesting that it has been
artificially hewn out of the rock, an impression further enhanced by
the carefully-constructed ashlar archway to the west. "

west = mainCave

out asExit (west)

cannotGoThatWayMsg = 'You can\'t go through solid rock! '

’

Where the property is not overridden, however, the default "You can't go that way" message will be displayed as
before.

Page 50

2.33.4. cannotGoThatWaylnDark

By default, the cannotGoThatWaylnDark method of a Room (or BasicLocation) displays a message to the effect that
you can't see where you're going in the dark. We might want to change that in particular cases. For example, the
description of the crewQuarters suggests that there's a ladder leading down into the hold. If the player character goes
blundering about the crewQuarters in the dark there's always the danger that he or she will end up falling down the
ladder and kill themselves. To be fair, though, we may first want to warn the player character that wandering around in
the dark could prove dangerous, so we might do it this way:

crewQuarters : DarkCabin 'Crew Quarters' 'the crew quarters'
"The crew quarters seem largely deserted. There's an exit back aft and a
ladder leading down into the hold. "
down = holdLadderDown
aft = greatCabin
cannotGoThatWayInDark ()

{
darkEvents.doScript() ;

}
darkEvents : StopEventList

{
[

'Blundering about a ship in the dark could prove dangerous. ',
new function

{
"Blundering around in the dark you fall down a ladder into the hold

and break your neck. ";
endGame (ftDeath) ;
}
1
}

’

Note that the endGame function isn't part of the standard library; it's used here as a convenient wrapper for the
finishGameMsg function., so the next job is to define this function:

function endGame (msg)

{
finishGameMsqg (msg, [finishOptionUndo, finishOptionFullScore]);

}

The purpose is to avoid having to specify the same options (finishOptionUndo, finishOptionFullScore) each time we
want to end the game. The call to endGame(ftDeath) prints a "YOU HAVE DIED" message and ends the game with a
set of options such as UNDO, RESTART, FULL SCORE or QUIT; endGame(ftVictory) would do the same but with the
message "YOU HAVE WON". You can also supply your own message by supplying a single-quoted string as the msg
argument, e.g. endGame('YOU HAVE FAILED DISMALLY").

Note also that there is one situation that the code above does not handle, namely if the player tries to go DOWN from
the crewQuarters. We'll fix that next by overriding roomDarkTravel.

2.33.5. roomDarkTravel

BasicLocation.roomDarkTravel() defines what happens if we try to move from the current location when it's dark to
another dark location. By default, it simply displays the same message as cannotGoThatWaylnDark and then uses
exit to cancel the movement action. In most cases you'll probably want to keep both methods appearing to do the
same thing (unless you want to allow travel from one dark location to another), so that the player is given no indication
in the dark whether a given direction is valid for travel or not. In this case we could simply override roomDarkTravel to
call cannotGoThatWaylnDark and then exit:

crewQuarters : DarkCabin 'Crew Quarters' 'the crew quarters'
"The crew quarters seem largely deserted. There's an exit back aft and a

Page 51

ladder leading down into the hold. "
down = holdLadderDown
aft = greatCabin
cannotGoThatWayInDark ()

{

darkEvents.doScript () ;

}

roomDarkTravel (actor)

{
cannotGoThatWayInDark;

exit;
}
darkEvents : StopEventList
{
[
'Blundering about a ship in the dark could prove dangerous. ',
new function

{
"Blundering around in the dark you fall down a ladder into the hold

and break your neck. ";

endGame (ftDeath) ;

’

In this case the player only gets one warning; if the PC leaves the crewQuarters aft to the greatCabin after making one
false step in the dark, the next false step in crewQuarters in the dark will kill the PC off. This may be what you want,
but we'll try changing it next using enteringRoom.

2.33.6. enteringRoom

It is sometimes useful to have something happen each time an actor arrives in a room. For example, we may want to
reset the state of the darkEvents StopEventList each time the player character enters the crewQuarters so that there
is always one warning about blundering about in the dark before the PC falls down the ladder and dies. This can be
achieved by overriding enteringRoom:

crewQuarters : DarkCabin 'Crew Quarters' 'the crew quarters'
"The crew quarters seem largely deserted. There's an exit back aft and a
ladder leading down into the hold. "
down = holdLadderDown
aft = greatCabin
cannotGoThatWayInDark ()
{
darkEvents.doScript () ;
}
roomDarkTravel (actor)
{
cannotGoThatWayInDark;
exit;
}
darkEvents : StopEventList
{
[
'Blundering about a ship in the dark could prove dangerous. ',
new function

{

"Blundering around in the dark you fall down a ladder into the hold
and break your neck. ";
endGame (ftDeath) ;

}
]
}
enteringRoom (traveler)
{
darkEvents.curScriptState = 1;

}
Page 52

’

The enteringRoom method is a convenience hook that is called from travelerArriving, which performs some significant
processing of its own and which uses a longer parameter list. By default, the library method enteringRoom does
nothing, so that we do not need to call inherited. Without the enteringRoom method we should instead have had to
write:

travelerArriving (traveler, origin, connector, backConnector)

{
darkEvents.curScriptState = 1;
inherited (traveler, origin, connector, backConnector);

}

There is also a corresponding leavingRoom(traveler) method that can be used to execute custom code when a
traveler is about to leave a room.

2.33.7. inRoomName

The inRoomName(pov) method is used to define how a room should be named when listing its contents from the point
of view of another location. The method should return a single-quoted string. For further explanation and an example,
see DistanceConnector.

Page 53

3. NonPortables

3.1. NonPortable Introduction

Most of the items we have added to the game so far have been NonPortables - that is objects that cannot be picked
up and moved around - but that is because they have mainly been various types of room and passage. In this section
we shall take a look at the principal kinds of NonPortable object one might use as part of the contents of a Room,
giving a few examples to start furnishing the rooms we have created so far.

One common feature of NonPortable objects to be borne in mind is that, by default, they are not shown in listings of
the contents of rooms or other objects. This is because they are considered to be permanent features of their location,
and should therefore be mentioned in the description of their room or other container, or else given an initSpecialDesc
or specialDesc (which will be listed). This behaviour can be changed by overriding the isListed, isListedInContents,
and isListedIninventory properties of a NonPortable object. Note that the fact that a NonPortable is not listed does not
of itself make it invisible: it can still be EXAMINEd and will respond to other commands directed towards it.

You are not likely to declare an object to be of class NonPortable in your game code, since NonPortable serves
principally as a common ancestor class to a number of different classes that are commonly used. A patrtial tree of
NonPortable classes, some of which we have already met, is as follows:

NonPortable
Fixture
Component
ComplexComponent
Decoration
Unthing
Distant
Enterable
EntryPortal
Exitable
ExitPortal
NominalPlatform
Passage
Room
RoomPart
SecretFixture
Immovable
Heavy
TravelPushable

A Note on Notation
In what follows we shall specify the room location of objects using the @notation of the Thing template, rather than the
+ notation, e.g. by writing

myThing : Thing 'my thing' 'thing' @outsideCave
"A poor thing, but mine own. "

Rather than

+ myThing : Thing 'my thing' 'thing'
"A poor thing, but mine own. "

Either method is possible in your own code; the reason for doing it this way here is to avoid the need for (and possible
confusion arising from) specifying where in existing code these new objects need to be placed. There is also
something to be said for specifying the objects in a different part of the code - even a different source file - from the
rooms and connectors, since this leaves the basic outline of the map clearer in the room code. The downside is that it
may be less immediately apparent how objects and rooms relate to each other.

Page 54

3.2. Fixture

The Fixture class is for items that are quite evidently fixed in place within their locations. Unless a Fixture is given an
initSpecialDesc or specialDesc property, it is not normally listed as part of the contents of a room, since it is assumed
that some reference will have been made to it in the description of the room. Some such Fixtures have already been
implemented as Passage objects; now we'll add a few others.

For example, the description of mainCave refers to a torch fixed to the wall, so we might implement it as a Fixture
(although later we shall also need to make it a FireSource):

Fixture 'torch' 'torch' @mainCave
"The torch, which is fixed firmly to wall by a steel bracket, is blazing merrily,
its flames casting a bright but flickering light over the cave. "
cannotTakeMsg = 'It\'s fixed to the wall. '

’

Note that we have overridden cannotTakeMsg to give a slightly more meaningful response than the default when the
player attempts to take the torch. It would also be possible to override the cannotMoveMsg and cannotPutMsg in a
similar way. If any of these properties is overridden it should be with a single-quoted string (or a property pointer) and
never with a double-quoted string.

The description of the Quarterdeck likewise refers to a deck rail, which we can implement thus:

Fixture 'wooden (deck) rail' 'deck rail' QquarterDeck
"The wooden deck rail runs along the forward edge of the Quarterdeck,
separating it from the main deck, although it is possible to get round
the rail either to starboard or port to go foreward. A large wooden
panel is fixed to the centre of the rail. "

’

In neither case is it necessary to give names to these objects, since they will not be referred to elsewhere in code
(though this may not always be the case with Fixtures). Note the use of the 'weak tokens' syntax in the vocabulary for
the rail; this allows players to refer to it as a ‘wooden deck rail' without its answering to ‘deck’ alone.

3.3. CustomFixture

A CustomFixture is simply a fixture that uses the same custom message for taking, moving, and putting. In many
cases, it's useful to customize the message for a fixture, using the same custom message for all sorts of moving. Just
override cannotTakeMsg, and the other messages will copy it.

We haven't yet reached the point in our game where we need a CustomFixture, but we'll eventually use one to
represent the pillars in a temple.

See also the similar but subtly different Customimmovable.

3.4. Decoration

The normal purpose of a Decoration object is to provide a description of an object mentioned in a room description or
other object description, when the object is of no real importance to the game but ought to be implemented for the
sake of completeness. For example, consider the following transcript:

> LOOK
Entrance Cave
This large cave forms the main entrance to the whole underground complex.

Page 55

A red sign on one wall points to the north; next to it is a blue sign.
A sturdy steel ladder leads down through a large round hole in the floor,
and a narrow ledge is carved into one wall.

>X RED SIGN
You see no red sign here.

Even if the red sign is of no importance to the game, this is frustrating to the player. A Decoration object gets round
this by providing something that produces a description in response to an EXAMINE command and a message like
"The red sign is not important.' in response to any other action attempted upon it. We could thus implement the two
signs mentioned in the entranceCave as follows:

Decoration 'red sign*signs' 'red sign' (@entranceCave
"\nWAY OUT ->\n"
dobjFor (Read) asDobjFor (Examine)

’

Decoration 'blue sign*signs' 'blue sign' @entranceCave
"\n
WELCOME TO  THE\NEERHTSDAT CAVES\n"
dobjFor (Read) asDobjFor (Examine)

’

Note that we have remapped READ to EXAMINE for these signs since a player might quite reasonably expect to be
able to read a sign as well as examine it. Note also the *signs syntax in the vocabulary of these objects. Any word
after an asterisk (*) in an object's vocabulary is considered a plural (or other collective noun) for that object. In this
instance this allows a player type X SIGNS or READ SIGNS and have both signs described by the same command.

According to the room description of mainCave, the torch is simply fixed to the wall. If the player examines the torch
however, he or she is told that the torch is fixed to the wall by means of a steel bracket. Players are not meant to
interact with the bracket in any other way, but since they may try to, it is a good candidate for a Decoration object.

Decoration 'steel bracket' 'steel bracket' @mainCave
"The steel bracket is fixed securely to the wall; there doesn't appear to be
any way it could be detached. "

’

Included in the description of longCave is the notice that "Some words have been crudely scratched on the south
wall." A Decoration object may well be just the thing to represent these words, but this requires a little more thought.
By default if we try to do anything to these words but EXAMINE them, the game will report "The words aren't
important.” This may not be the message we want to convey here, since what the writing on the wall says may actually
have some significance. To deal with this need we need to override the Decoration's notimportantMsg property with
something more appropriate. Moreover, it would be reasonable for the player to attempt to READ the words as well as
EXAMINE them; as in the case of the two signs in the Entrance Cave, we want READ to be treated like EXAMINE
rather than displaying whatever we put into notimportantMsg, so once again we need dobjFor(Read)
asDobjFor(Examine). There is one further complication: the writing is described as being scratched on the south wall,
so it ought to be described if the player examines the south wall; to achieve this we need to associate the words with
the south wall of the cave:

longCaveWords : Decoration 'words/writing' 'words' @longCave
"The writing on the wall declares:\b
<g>One banana to rule them all\nAnd in the darkness bind them.</g>"
isPlural = true
notImportantMsg = 'That\'s not the sort of thing you can do to them. '
dobjFor (Read) asDobjFor (Examine)
initNominalRoomPartLocation = defaultSouthWall

’

The last line of this definition (excluding the final semicolon) tells the system that the longCaveWords are nominally on
the south wall. This allows the player to EXAMINE WORDS ON SOUTH WALL as well as EXAMINE WORDS and
have the description displayed. It also causes the words to be mentioned when the player types EXAMINE SOUTH
WALL (note that prior to version 3.0.9 it would also have been necessary to override isListedinRoomPart to achieve
this effect, but this is no longer necessary in 3.0.9).

A further refinement offered in version 3.0.9 is the new mix-in class RoomPartltem. This allows us to set up an item
that displays its specialDesc (or initSpecialDesc) only when the room part to which its nominally attached is examined.
This is useful for objects such as doors and windows that might already be included in the general room description,

Page 56

or for objects that are not worth listing in their own right but which are worth a mentioned when the room part to which
they are attached is examined. The advantage of using specialDesc (or initSpecialDesc) for this purpose is that we
can customise the way the fixture is described, instead of producing something a bit ungainly like, "On the north wall is
ared door. " As an example, we might further customise the bracket object so that when the north wall of the cave is
examined we see "A steel bracket containing a flaming torch is attached to the wall. ":

bracket : RoomPartItem, Decoration 'steel bracket' 'steel bracket'
@mainCave
"The steel bracket is fixed securely to the wall; there doesn't appear to be
any way it could be detached. "
specialNominalRoomPartLocation = defaultNorthWall
specialDesc = "A steel bracket containing a flaming torch is fixed to the wall. "

’

Note that in this case, since the bracket will never move, it doesn't matter whether we use
specialNominalRoomPartLocation and specialDesc, or initNominalRoomPartLocation and initSpecialDesc, as long as
we use one pair or the other and don't try to mix them. If the bracket could be removed from the wall, we'd probably
want to use initNominalRoomPartLocation and initSpecialDesc.

Finally, a simple example of a Decoration would be the lake as seen from the shore. There seems little reason why
the lake should look any different from lakeRoom and pathEnd; rather than define the same decoration twice, we can
thus take a shortcut by making it a MultiLoc; strictly speaking, it should perhaps be a Multilnstance, but in this case no
harm will come of using MultiLoc and it's slightly simpler.

MultiLoc, Decoration 'great (giant) underground lake/water' 'lake'
"The lake, which stretches as far south as you can
see, looks almost as flat as a millpond, although the occasional
ripple runs across its surface. It is also strikingly
phosphorescent, casting an eerie green glow over the whole
vast cavern. "
locationList = [lakeRoom, pathEnd]

’

The point to bear in mind here is that a MultiLoc represents a single physical object present in more than one location,
and one that is sufficiently small that, for example, if it is lit in one location it is lit in all and if something is put in it in
one location it can be retrieved from it in another. The lake meets the first of these conditions, but not the second.
Because, however, it's a Decoration, the only relevant consideration is lighting. If one part of the lake might be in
darkness while another was lit, it would inappropriate to use a MultiLoc to represent it (since what was meant to be the
dark part of the lake would appear as lit). In this game, however, all parts of the lake will be permanently lit, so it's safe
to make it a MultiLoc.

The general principle here is that it's safe to make a Decoration a MultiLoc if and only if the lighting conditions are
always the same in all the locations where the Decoration exists (it's fine if all the lighting conditions change
simultaneously, but they must always be the same in each location at any one time). If this condition is not met, use a
Multilnstance instead.

3.5. Distant

A Distant is a special type of Decoration that represents an object that's too far away to interact with, perhaps an
object that's in another location. The lake as seen from the top of the mast might come into this category:

Distant 'great underground lake' 'lake' Q@topOfMast
"The lake stretches out to starboard as far as the eye can see; it looks as
calm and flat as a millpond. "

’

The shore as seen from the same place might also come into this category. Since eventually the ship will move
around the description must either be studiously vague or else vary according to the location of the ship:

Distant 'shore' 'shore' @topOfMast
desc ()

{

switch(ship.location)

{
Page 57

case lakeRoom:
"The shore to port is a narrow strip of land bounded by the wall of the
cave, through which a doorway leads to the north. ";
break;
default:
"The shore is directly on the port side of the ship. ";

Clearly, we should come back and expand the desc method once we've implemented more of the locations the ship
can go to. The points to note here are (1) that desc() can be a method (in which case we need to name it explicitly, not
via the template) and (2) to remember to use the break statement in each branch of the switch statement where we
don't want fall-through.

Note that the OutOfReach class, which we shall encounter later, can sometimes offer a more flexible way of
implementing distant objects; especially when they may become reachable under certain conditions.

3.6. Unthing

An Unthing is a special kind of Decoration used to represent something that isn't present, but to which the player might
try to refer; it then displays its notHereMsg to explain why it isn't there. The most common use for an Unthing is to
represent the absence of something that has just disappeared. For example suppose we plant what appears to be
treasure in mainCave, but have it disappear when the player attempts to take it. We might then move an Unthing into
its place to describe its absence if the player continues to refer to it:

fakeTreasure : Thing 'huge great golden gold banana/treasure’

'golden banana' @mainCave

"It's a fantastic treasure, over two feet long, and by the look of it, solid

gold. It must be worth an absolute fortune!"

initSpecialDesc = "A huge treasure - a great golden banana - lies on the ground.

dobjFor (Take)

{

action ()

{

"

"All that glisters is not gold, and as you try to take the great golden
banana it crumbles into dust and vanishes away. ";
noTreasure.movelInto (location);
moveInto (nil) ;
}
}

getFacets () { return [noTreasure]; }

’

noTreasure : Unthing 'huge great golden gold treasure/banana/dust' 'golden banana'
'The illusory golden banana vanished into fine dust that is no
longer visible. '

Note the use of getFacets on fakeTreasure, so that if a player types TAKE BANANA followed by, say, X IT, the parser
will know that IT now refers to the noTreasure object that's just been substituted for the fakeTreasure. In this case
there's no need to add a getFacets method to noTreasure, since the fakeTreasure will never reappear to be referred
to as IT. Note also the range of vocabulary words we have given to both objects, and that we added' dust' to the list of
words by which the noTreasure object can be referred to.

Note that the third property we have defined on Unthing is single-quoted string, not a double-quoted string. This is
because there is a special Unthing template which puts the notHereMsg instead of desc in third place. We don't want
to define desc on an Unthing, because it's not generally useful, we just want to define the notHereMsg which will be
used for any command that tries to interact with the Unthing. The above definition of noTreasure is equivalent to:

noTreasure : Unthing ‘'huge great golden gold treasure/banana/dust' 'golden banana'
notHereMsg = 'The illusory golden banana vanished into fine dust that is no
longer visible. '

Page 58

Or to:

noTreasure : Unthing

vocabWords = 'huge great golden gold treasure/banana/dust'
name = 'golden banana'
notHereMsg = 'The illusory golden banana vanished into fine dust that is no

longer visible. '

3.7. Immovable

An Immovable object is one that can't be moved but isn't obviously fixed in place. The practical difference between a
Fixture and an Immovable is that moving the former is forbidden in the verify method, while moving the latter is
disallowed in the action method.

The messages that are displayed when the player attempts to TAKE, PUT or otherwise MOVE (e.g. PUSH or PULL)
an Immovable can be changed by overriding cannotTakeMsg, cannotPutMsg and cannotMoveMsg respectively.

A simple Immovable would be something like a piece of furniture that the player's not allowed to take or move.
However, we'll make our example a bit more interesting than that: we'll put a rug in the roundCave that starts by
covering the hole in the floor. The player cannot take the rug but he or she can pull it (once only) to reveal the hole
beneath. Later we'll also hide a key under this rug:

rug : Immovable 'large rectangular chinese rug/pattern/leaves/dragons' 'Chinese rug'
@roundCave
"The rectangular rug is patterned in pastel colours, mainly turquoise round the
edge and principally golds and browns within. The patterns consists mainly
of leaves and dragons. "

initSpecialDesc = "A Chinese rug covers the centre of the floor. "
specialDesc = "The Chinese rug has been pulled over to one side of the cave. "
cannotTakeMsg = 'You probably could roll the carpet up and drag it around,

but you don\'t want to be encumbered with it. '

dobjFor (Pull)
{

action ()
{
if (moved)
"You can't pull the rug any further, it's already at the edge of the cave. ";
else
{
"Pulling the rug over to the edge of the cave reveals a square hole in the floor. ";
moved = true;

There a few things to note here. First, we have used the moved property of the rug to determine whether or not the
rug has been pulled to one side. This isn't its normal function, since normally moved is used to track whether an object
has moved into another location. However, it's convenient here, both because we don't need rug.moved for any other
purpose and also because setting moved = true when the rug has been pulled also means that thereafter the
specialDesc will be displayed in place of the initSpecialDesc, which happens to be just what we want (since it
describes the changed state of the carpet). We have overridden cannotTakeMsg to provide a custom response, and,
more importantly, we have overridden the dobjFor(Pull) handling to allow the rug to be pulled a single time to reveal
the hole.

This does, of course, require some change to the definition of the hole object so that it appears and can be traversed
only when the rug has been pulled aside. The easiest way to achieve this is to change it from a ThroughPassage to a
HiddenDoor and to set its isOpen property to rug.moved (since moving this rug effectively opens this previously

Page 59

hidden passage). We also need to change the room description of roundCave so that the hole is mentioned only when
the rug has been pulled:

roundCave : DarkRoom 'Round Cave' 'the round cave'
"This round, rocky cave has a narrow exit to the east<<rug.moved ?
' and a strange square hole in the floor' : nil>>. "
east = mainCave
down = squareHole
+ squareHole : TravelWithMessage, HiddenDoor 'square hole/chute' 'square Hole'

"The hole is just about large enough for one person to fit through. A glint
of something metallic can be seen just through the hole. "

travelDesc = "You find yourself sliding down a long, slippery metal chute;
After a short ride you are ejected into another cave. "
isOpen = (rug.moved)

3.8. Customimmovable

A CustomIimmovable is an Immovable that uses the same custom message for taking, moving, and putting. In many
cases, it's useful to customize the message for an immovable, using the same custom message for all sorts of
moving. Just override cannotTakeMsg, and the other messages will copy it.

At first sight this makes a Customlmmovable look identical in function to a CustomFixture; there is, however, a subtle
difference. This is, of course, the same as the difference between an Immovable and a Fixture, namely that while the
library regards an attempt to move, push or take a Fixture as illogical (i.e. ruled out in the verify method), it merely
disallows taking an Immovable (in the action method). The main practical effect of this is that a CustomFixture will not
be considered as a possible candidate for a move, take or push action in disambiguation, while a Customimmovable
will. CustomFixture should therefore be used for things that obviously can't be moved around (like pillars in a temple),
while Customimmovable should be used for things that perhaps could be taken, but in fact cannot be (like the carpet
in the Immovable example, which could just as well have been a Customimmovable). We'll give another example of a
Customimmovable later.

3.9. Heavy

A Heavy object is one that is too heavy for the player character to lift or move, such a piece of heavy furniture:

cabinDesk : Heavy 'large solid ocak desk' 'desk' @greatCabin
"It's a large, solid oak desk. A button is fixed underneath it. "

’

We shall be doing more things with this desk in due course.

3.10. Component

As its name suggests, a Component is something that is part of something else. It need not be fixed within a particular
room location, since it could be part of a portable object, a button on a mobile device, for example, but it cannot be
detached from its immediate parent, and wherever its parent goes, it goes with it. A button on a stationery device
equally qualifies, however, so we can nhow move the button that was defined in greatCabin to a more appropriate
location (just after the desk defined above), and change it from a Fixture to a Component:

+ Button, Component 'small brown button' 'small brown button'
"The small brown button is fixed to the underside of the desk. "
dobjFor (Push)
{

action ()

Page 60

"There's a sharp <i>click</i>, and a section of the foreward bulkhead slides

<<bulkheadDoor.isOpen ? 'closed' : 'open'>>. ";
bulkheadDoor.makeOpen (!bulkheadDoor.isOpen) ;

As yet we have not implemented any portable objects to which a component might be attached, but we have referred
to a panel mounted on the deck rail, so we can follow the definition of the deck rail object immediately with:

+ Component 'large wooden panel' 'panel'
"The panel seems to have something to do with sailing the ship. A wheel and a lever

are mounted on it, and between them is a hexagonal aperture. "

The panel refers to a wheel, a lever and a hexagonal aperture, all of which will be its components; but we are not in a
position to implement any of these just yet.

Page 61

4, Things

4.1. Thing - Introduction

The Thing class is important in the TADS3 library for two reasons: (1) because it is the class used for all sorts of
portable objects the player may interact with and (2) because it is the ancestor class for anything that represents a
physical object in game (included those that are non-portable and some that are intangible). In the present chapter we
shall concentrate principally on the first use of Thing - as a class in its own right - but because so many classes inherit
(directly or indirectly) from Thing, much of what we say about the properties and methods of Thing will be equally
applicable to classes that inherit from Thing.

The properties and methods of Thing we shall be going on to discuss (or at least, exemplify) include:

brightness
bulk
canBeTouchedBy
desc

described
disambigName
distantInitSpecialDesc
feelDesc
globalParamName
initSpecialDesc
initDesc
isEquivalent
isHeldBy

isKnown

location
material

moved

name
remoteInitSpecialDesc
seen

sightSize
soundSize
smellDesc
specialDesc
tasteDesc
throwTargetCatch
useSpecialDesc
vocabWords
weight

In the present chapter we shall discuss only the simplest and most common of these, since some of the others will
only become relevant in the light of other classes and concepts we haven't covered yet.

There are also one or two subclasses of Thing that are both so straightforward and so miscellaneous they may as well
be dealt with in this chapter, namely:

Food
Readable
Wearable

4.2. Thing - The Basics

The basic properties that apply to almost all Thing objects (and objects using many of the classes inheriting from
Thing) are vocabWords, name, location, and desc. These are so common the standard Thing template allows them to
be defined without naming them, thus:

myObject : Thing 'vocabWords ' 'name' @location
"desc"

Page 62

And for the most basic portable objects, this type of definition will often suffice without the need to define any other
properties or methods. For example, we shall leave a coin for the player to find in the longCave room (using the Thing

template):

brassCoin : Thing '(small) brass coin/groat*coins' 'small brass coin' @longCave
"On the obverse is the head of King Freddie the Fat, and on the reverse
is stamped ONE GROAT. "

By now, most of these properties should be familiar. The desc (description) property is what is displayed in response
to an EXAMINE command; the only real complication is that you may sometimes want to define desc as a method, in
which case it must be explicitly defined as a named method outside the template.

The name property is the what will normally appear when the object is listed in the contents of rooms, containers or
inventory, or when the parser needs to refer to the object (E.g. "Which coin do you mean, the brass coin or the gold
coin?").

For a Thing the location is normally the object's physical container, which may be a room, an actor (including the
Player Character) who is carrying or wearing the object, or some other form of physical container (such as a jar or the
top surface of a table). The location can also be specified by using the + notation; e.g. to put the coin in longCave we
could have written

longCave : DarkRoom 'Long Cave'

+ brassCoin : Thing '(small) brass coin/groat*coins' 'small brass coin'
"On the obverse is the head of King Freddie the Fat, and on the reverse
is stamped ONE GROAT. "

’

Note that if both the + notation and the @Ilocation notation are used on the same object, the + notation takes
precedence. But if the + notation is used with an explicit setting of the location property, the explicitly named location
property takes precedence. For example, in the case of the brassCoin with the + notation, if | added centrancecCave
to the object definition after 'brass coin' the coin would remain in longCave, but if | added 1ocation=entranceCave
the brass coin would start life in the entranceCave, despite the + property. This can sometimes be useful if you have a
sequence of objects nested within one another using the + notation and you want to define an object that doesn't
belong in the containment hierarchy amongst those that do.

Note also that if location is an expression or method, it must be explicitly defined as a named property outside the
template, €.g. location = (ship.location)

The vocabWords property is perhaps the most complex of the four, so we shall discuss it in a separate section.

4.3. vocabWords

The vocabWords property defines the vocabulary with which the player can refer to the object. The definition of
brassCoin is

brassCoin : Thing '(small) brass coin/groat*coins' 'small brass coin' @longCave
"On the obverse is the head of King Freddie the Fat, and on the reverse
is stamped ONE GROAT. "

In this definition the format of the vocabWords property defined through the template is:
(weakToken) adjective noun/noun*plural

A weak token is a word that may be included among the words used to identify an object, but which is not sufficient to
do so by itself. In this case, for example, the player may call the coin SMALL BRASS COIN or SMALL GROAT or
SMALL BRASS and the parser will know what is meant, but the coin will not answer to being referred to simply as
SMALL (as in EXAMINE SMALL or TAKE SMALL). Any word (it need not be the first) included in parentheses in the

Page 63

vocabWords property of a Thing is a weak token. We have here made SMALL a weak token since it seems too
common a word to stand on its own as defining which object is meant.

The functional difference between adjectives and nouns is that any number of the listed adjectives may be used by the
player to identify the object, but only one of the nouns (but see below for an exception to this). Thus the player may
type X SMALL COIN, or X BRASS COIN or TAKE SMALL BRASS GROAT and the parser will accept all of these as
valid references to the coin. However, if the player types X GROAT COIN or X SMALL COIN GROAT this will not be
taken as referring to the coin. If you felt GROAT COIN was a valid way of referring to this object you could allow it by
adding 'groat' to the list of adjectives as well, i.e.

+ brassCoin : Thing '(small) brass groat coin/groat*coins' 'brass coin'
"On the obverse is the head of King Freddie the Fat, and on the reverse
is stamped ONE GROAT. "

Players can then refer to it as a SMALL BRASS GROAT COIN if they so wish.

The plural (anything after the asterisk) can be used to refer to a number of coin objects collectively. For example, if we
defined a silver coin and a gold coin, and gave them both a plural of ‘coins', then, provided all three were in scope, the
word COINS could be used to refer to all three coins at once. For example, X COINS would list a description of all
three coins and TAKE COINS would cause the Player Character to pick up all three coins (assuming that TAKE was a
valid action for all three coins when the command was issued).

And now for the exception to the rule that an object can only match one noun at a time. On occasion one can have an
object that essentially contains two nouns connected by 'of' in its name like 'pile of rubbish' or 'golden banana of
discord'. In this case you simply define both nouns in the normal way; for example, for an object that will match 'golden
banana of discord' you could define:

goldenBanana 'golden banana/discord' 'Golden Banana of Discord'
"It's golden and banana-shaped. "

’

A further complication of the vocabWords property is that you can't usefully change the vocabulary used to refer to an
object by a programming statement that manipulates it directly. For example, if you wanted the player to be able to
refer to the coin as a groat only after something else had occurred (perhaps his examining the coin) you could not
achieve this by writing a statement like:

brassCoin.vocabWords += 'groat';

Since although this code would execute, it would not have the desired effect. Instead the easiest way to add
vocabulary to an object is with the initializeVocabWith() method, which accepts a string argument in the same format
as the vocabWords property, so we could write:

brassCoin.initializeVocabWith ('groat');

To add 'groat' as a noun to the brassCoin's vocabulary. Or even
brassCoin.initializeVocabWith('little shiny object');
To add 'little' and 'shiny' as adjectives and 'object’ as a noun.

An alternative is to use cmdDict.addWord(obj, str, voc_prop), e.g. to achieve the same as the previous example:

cmdDict.addWord (brassKey, 'little' &adjective);
cmdDict.addWord (brassKey, 'shiny' &adjective);
cmdDict.addWord (brassKey, 'object' &noun);

Although this is rather more long-winded. You can use the similar removeWord method to take vocabulary away from
an object, which may occasionally be useful. For example, let's suppose that when the coin is first seen lying on the
ground it just appears to be a small brassy object. We want it referred to as a small brassy object until it's examined,
after which it becomes a small brass coin; at that point we no longer want the vague word 'object' to refer to it, but until
then the player can't refer to it as a coin or groat. We can achieve this with the following:-

brassCoin : Thing '(small) brassy object' 'small brassy object' @longCave
"On the obverse is the head of King Freddie the Fat, and on the reverse

is stamped ONE GROAT. "

Page 64

dobjFor (Examine)

{

action()

{
inherited;
changeName () ;
}
}

changeName ()

{
name = 'small brass coin';
cmdDict.removeWord(self, 'object', &noun);
initializeVocabWith('brass coin/groat*coins') ;

}

4.4, initDesc & initSpecialDesc

If the coin starts life lying on the ground as a small brassy object, rather than seeing a description that reads "You see
a small brassy object here" it would be nicer if it read something like "A small brassy object lies on the ground in a dim
corner of the cave. " Likewise, if we examined the coin without first picking it up it would be good if we obtained a
vaguer description such as "It looks like it might be a coin of some sort. " - after all, the standard description we've
given the coin refers to what's on its obverse and its reverse, but how can we see what's on both sides of the coin
while it's still lying on the ground?

To achieve this we can use the initSpecialDesc and initDesc properties. The first of these, initSpecialDesc, is what will
be displayed in a room or contents listing before the object has been moved (while its moved property is nil); initDesc
(if defined) is the description that will be given in response to an EXAMINE command before the object has been
moved (if initDesc is not defined, the ordinary desc property will be used instead). The definition of brassCoin then
becomes:

brassCoin : Thing '(small) brassy object' 'small brassy object' @longCave
"On the obverse is the head of King Freddie the Fat, and on the reverse
is stamped ONE GROAT. "
initSpecialDesc = "A small brassy object lies on the ground in a dim corner of the cave.
initDesc = "It looks like it might be a coin of some sort. "
dobjFor (Examine)
{
action ()
{
inherited;
changeName () ;

}

}

changeName ()

{
name = 'small brass coin';
cmdDict.removeWord (self, 'object', &noun);
initializeVocabWith ('brass coin/groat*coins');

}

’

Note that initSpecialDesc and initDesc are only used so long as moved is nil; as soon as moved is set to true they are
no longer employed. The moved property is set to nil by the mainMovelnto(newContainer), which is called by
movelntoForTravel(newContainer) which is in turn called by movelnto(newContainer), the method most commonly
used to move objects in game code or the library's handling of actions like TAKE. Normally this does not matter, but
there may be occasions when it could defeat the use of initSpecialDesc and initDesc. For example, suppose the
player had to perform some action to reveal the coin, e.g. because it was hidden under something else or falls out of
something else. We might start the coin in another container (or nil) and then move it into the longCave using:

brassCoin.movelInto (longCave) ;

The trouble is that this will set brassCoin.moved to true, so the initSpecialDesc and initExaminedDesc won't be used,
even though this is effectively the first appearance of the coin in the game. The way round this under such

Page 65

circumstances is to set moved back to nil in your code:

brassCoin.movelInto (longCave) ;
brassCoin.moved = nil;

4.5. globalParamName

The brassCoin is a little unusual in that it changes its name when it is first examined. This really ought to be reflected

in the initSpecialDesc property which could instead have been defined as:

initSpecialDesc = "\"<<aName>> lies on the ground in a dim corner of the cave. "
Then, before the coin is examined it will be listed in a room description as:

"A small brassy object lies on the ground in a dim corner of the cave. "

Whereas if it is examined before being picked up and another LOOK command is issued, it will then appear listed as:

"A small brass coin lies on the ground in a dim corner of the cave."

Which more accurately describes the player's state of knowledge of the object. This is fine, but globalParamName
allows a slightly neater way of doing the same thing. It's really only useful on objects that change their name in the
course of the game (which is likely to be a small minority), and they allow the object to be referred to in a parameter
substitution string. This works by setting the globalParamName property to a single-quoted string that can be anything
we like, but which must be unique (in the realm of parameter names). The globalParamName thus set can then be
used as a message parameter which refers to this particular object, just as the library parameter dobj and iobj refer to

the direct and indirect objects of the current command. This means we can then rewrite initSpecialDesc as

initSpecialDesc = "{A coin/he} lies on the ground in a dim corner of the cave. "

The definition of the brass coin object then becomes:

brassCoin : Thing '(small) brassy object' 'small brassy object' @longCave
"On the obverse is the head of King Freddie the Fat, and on the reverse
is stamped ONE GROAT. "

initSpecialDesc = "{A coin/he} lies on the ground in a dim corner of the cave.
initDesc = "It looks like it might be a coin of some sort. "
globalParamName = 'coin'

dobjFor (Examine)
{
action ()
{
inherited;
changeName () ;
}
}
changeName ()
{
name = 'small brass coin';
cmdDict.removeWord (self, 'object', &noun);
initializeVocabWith ('brass coin/groat*coins');

}

4.6. specialDesc

There may be cases where we want something other than the plain-vanilla "You see an xxx here" to appear in room
description lists even after an object has moved. For this purpose an object may be given a specialDesc property as

Page 66

well as an initSpecialDesc property. If an object has a specialDesc property it is used either if the object has moved
(i.e. its moved property is true) or if there is not also an initSpecialDesc property. This works even for objects that
would not normally be listed, because they are NonPortable. For example, if we wanted the desk in the greatCabin to
appear in the list of the cabin's contents we could give it a specialDesc:

cabinDesk : Heavy 'large solid oak desk' 'desk' @greatCabin
"It's a large, solid oak desk. A button is fixed underneath it. "
specialDesc = "A large oak desks sits in the middle of the cabin. "

In this case this may a bit redundant, since we have already mentioned the desk in the description of the cabin, and
we would normally want one or the other but not both. But at least the specialDesc property allows us the option of
which way we do it (although since cabinDesk is never moved it would work equally well to use its initSpecialDesc
property). Incidentally, the library does not provide a mechanism for incorporating a specialDesc within the text of a
room description (like an Inform describe routine), but it's fairly easy to achieve this effect if you want it, by defining a
custom property (say inRoomDesc) on the object you want so described, and a custom method on the room in
guestion, e.g.:

greatCabin : Cabin 'Great Cabin' 'the great cabin'

"The great cabin occupies the entire width of the ship at the stern. The stern
windows aft look out over the water, while there is a solid wooden bulkhead
foreward and a flight of steps leads up to the deck above. <<extras>>"
up = cabinSteps
fore = bulkheadDoor
roomParts = static inherited - defaultAftBulkhead - defaultForeBulkhead

+ greatCabinAftBulkhead + greatCabinForeBulkhead
extras()

{

foreach(local cur in contents)
cur.inRoomDesc;

’

cabinDesk : Heavy 'large solid oak desk' 'desk' @greatCabin
"It's a large, solid oak desk. A button is fixed underneath it. "
inRoomDesc = "A large oak desks sits in the middle of the cabin. "

’

There is nothing to stop you defining this extras() method on the Room class if you want to make it more general, but
you then have to remember to include <<extras>> at the appropriate point of your room descriptions, or else override
the library code in some such way as:

modify Room
roomDesc () { inherited; extras; }
extras ()

{
foreach (local cur in contents)
cur.inRoomDesc;

This may be more convenient, since it will now work in every room without your needing to add <<extras>> to the
desc property, provided you're happy for the inRoomDescs always to be listed at the end of the room description.
We'll give a more sophisticated version of this modification below.

But to return to specialDesc, we could also use this property to give the coin a more specialized description in a room
listing whenever it's dropped on back on the floor, e.g.

specialDesc = "{A coin/he} lies on the floor. "

Which will give an appropriate description whether the coin has been examined or not. The problem with this is that
we want this specialDescription only to be used if the coin is in fact lying on the floor somewhere, and not, for
example, if it's placed on some other surface or in some other container. The easiest way to achieve this is to override
useSpecialDesc, so that the brassCoin object becomes:

brassCoin : Thing '(small) brassy object' 'small brassy object' @longCave
"On the obverse is the head of King Freddie the Fat, and on the reverse
is stamped ONE GROAT. "
initSpecialDesc = "{A coin/he} lies on the ground in a dim corner of the cave. "

Page 67

initDesc = "It looks like it might be a coin of some sort.

globalParamName = 'coin'
specialDesc = "{A coin/he} lies on the floor. "
useSpecialDesc { return location.ofKind(Room) || useInitSpecialDesc(); }

dobjFor (Examine)

{

action ()
{
inherited;
changeName () ;
}
}

changeName ()

{
name = 'small brass coin';
cmdDict.removeWord (self, 'object', &noun);
initializeVocabWith ('brass coin/groat*coins');

}

You need to be careful about one thing in particular when overriding useSpecialDesc, however, namely that
useSpecialDesc also determines if the initSpecialDesc is displayed; if useSpecialDesc returns nil when the
initSpecialDesc would otherwise be displayed, the initSpecialDesc won't be used. The safest way not to fall foul of this
problem is to add | | useInitSpecialDesc () to whatever condition you're using to determine whether the
specialDesc should be used, as in the example above (where it is not, in this particular instance, strictly necessary).

To return to our inRoomDesc customization, it would be nice if we could choose the order in which objects using our
custom inRoomDesc property were mentioned in the description of the room that contains them, perhaps by the
addition of an inRoomDescOrder property. To achieve this, we need to make our customization a bit more
complicated:

modify Room

roomDesc () { inherited; extras; finalDesc;}
extras ()
{
if (contents.length==0) return;

local cur;
local vec = new Vector (10);
foreach (cur in contents)
if (cur.propType (&inRoomDesc) is in (TypeDString, TypeCode))
vec.append (cur) ;
if (vec.length==0) return;

vec = vec.sort(nil, {a, b: a.inRoomDescOrder - b.inRoomDescOrder });
foreach (cur in vec)
if (gPlayerChar.canSee (cur))
cur.inRoomDesc;

}

finalDesc = nil

’

modify Thing
/* Text to add to the description of the room I'm immediately in.
* If inRoomDesc is a double-quoted string or a method that displays
* a string, this is added to the description of the enclosing room.
*/

inRoomDesc = nil

/* If several objects in the same room have an inRoomDesc, the inRoomDesc
* property can be used to define the order in which they are described.
To have objects included in the room description in the order in which

* they are defined in the source file, define inRoomDescOrder = (sourceTextOrder)
*/
inRoomDescOrder = 100

In the event that you wanted to mix in room description text with object description text in some way other than having
all the objects described last, you use the finalDesc property, e.g.:

Page 68

boringRoom : Room 'Boring Room'
"There's not much here really, "

finalDesc = "The only way out is to the north. "
7
+ Decoration 'carvings' 'carvings'
"They're rather amateurish. "
inRoomDesc = "apart from some carvings on one wall. "

This will produce the room description: "There's not much here really, apart from some carvings on the wall. The only
way out is to the north. " This would probably be more useful if the description of the carvings might change, e.g.:

+ Decoration 'carvings' 'carvings'
"They're rather amateurish. "
inRoomDesc = "apart from some <<epithet>> carvings on one wall. "
epithet = (described ? 'amateurish' : 'intriguing')

For a more complex sandwich, you could include SecretFixture objects whose only function was to provide parts of
the room description in the sequence determined by their inRoomDescOrder.

4.7. described

The described property is simply a flag that indicates whether an object has been explicitly examined by the player. It
starts out at nil, and is set to true when the player EXAMINES the object. We can take advantage of this to provide a
slightly smoother response if the player first picks up the coin and only then examines it, by explaining on what is then
the first examination that the 'small brassy object' is in fact a coin; and while we're at it we can also use it to avoid
needlessly calling the changeName() routine more than once (note that this test must come before we call the
inherited handling, or changeName will never be called):

brassCoin : Thing '(small) brassy object' 'small brassy object' @longCave
"<<described ? nil : 'It turns out to be a coin. '>>
On the obverse is the head of King Freddie the Fat, and on the reverse
is stamped ONE GROAT. "

initSpecialDesc = "{A coin/he} lies on the ground in a dim corner of the cave. "
initDesc = "It looks like it might be a coin of some sort. "

globalParamName = 'coin'

specialDesc = "{A coin/he} lies on the floor. "

useSpecialDesc { return location.ofKind(Room) || useInitSpecialDesc(); }

dobjFor (Examine)

{

action ()
{
if ('described) changeName () ;
inherited;
}
}

changeName ()

{
name = 'small brass coin';
cmdDict.removeWord (self, 'object', &noun);
initializeVocabWith ('brass coin/groat*coins');

}

If this is beginning to seem like a lot of complicated work for one simple coin, don't worry; in practice most object
definitions are not nearly this elaborate, we have made this one so mainly to illustrate what can be done with some of
the methods and properties of Thing, not what must be done on each occasion. Our small brass coin is now well and
truly defined enough, and we shall move on to define some other Things to populate our game world.

Page 69

4.8. bulk and weight

The bulk and weight properties are fairly self-explanatory, in that they can be used to hold numbers (which must be
integers) representing the bulk (volume) and weight of the item according to any scheme the game author finds
convenient.

One use of these properties, which is normally deprecated in modern IF, is to limit what the player character can carry,
either by weight or volume. This can be done by setting the player character's bulkCapacity and weightCapacity
properties to some value lower than the default of 10000. Conversely, if you are going to use a large range of
numbers for the bulk property of you objects, you might want to raise its maxSingleBulk property to something larger
than its default value of 10. Although inventory puzzles are now unpopular, it is more acceptable to limit what a PC
can carry round in his or hands if you provide something (such as a bag or sack) he or she can use to transport
objects that exceed the capacity of his or her hands.

Another use for the bulk property might be as a rough and ready way of preventing the absurdity of allowing an
obviously small container like a purse contain one or more obviously large objects like a packing case or a pair of
oars; for this reason alone you might want to give at least a little thought to the bulk you give your objects and the
bulkCapacity you give any container objects. At the very least it would be odd to have a container whose bulkCapacity
exceeded its bulk.

Apart from limiting what a player can carry, weight could be used to limit what various platforms and passages can
support; you could, for example, have a flimsy bridge that collapses if the total weight it is made to bear exceeds a
certain amount. In this game, however, we shall use weight for a different kind of puzzle, namely one that involves
putting exactly the correct total weight (which in this game will be 54) on a stone altar in order to open a secret
door behind it. Any combination of objects that weigh 54 in total will trigger the secret door, and in due course we
shall provide a weighing machine for the player to find out what any portable object weighs. But to make sure the
problem is soluble, we shall also provide a set of objects that weigh 1, 2, 4, 8, 16 and 32 units, which guarantees
that (once all these objects have been collected) any weight up to 63 units can be formed by some combination of
these objects (to obtain 54 the player will need 32 + 16 + 4 + 2). Each of these objects will be a square tablet,
each made of some different material. One face of each of these objects will contain a grid of 25 (5 x 5) letters;
when the complete set is collected these inscriptions will, when deciphered, contain the instruction to place 54
pounds on the altar. An inscription on a tombstone outside the temple (in which the altar is located) will provide a
clue how the inscriptions are to be deciphered.

Since there will be several of these tablets in the game, all with similar descriptions, it will be convenient to define a
Tablet class:

class Tablet : Thing
desc = "\”"<<theName>> is about eight inches square and an inch thick.
On it is inscribed:\b<<inscription>>\b"
bulk = 4

We can then define our first tablet and place it in longCave:

brassTablet : Tablet 'brass tablet*tablets' 'brass tablet' @longCave

inscription = "F T M T R\nA O O I U\nS TUN I\nT I L RE\nRADAR"
initSpecialDesc = "A brass tablet rests by the ladder. "
weight = 4

’

We'll explain how the coded message works later; in the meantime you're welcome to try to work it out for yourself!

4.9. setSuperclassList

It's conceivable that we could have an object that starts out as one kind of thing, but later becomes another. For
example we might have a component of something that later proves to be detachable. For example, suppose that the
wooden panel becomes detached from the deck rail when it is struck with a heavy hammer. It might seem that this
would be impossible to implement since once we have defined something as a Component, it is fated to remain a

Page 70

Component for the duration. But in fact this is not the case, since in TADS 3 it is possible to change the class list of an
object at run-time, using the method setSuperclassList(new class list). For example, to make the large wooden
panel come free when struck by the hammer we could write:

+ Component 'large wooden panel' 'panel'

dobjFor (AttackWith)
{

verify ()
{
if (getSuperclassList () != [Component])
illogicalAlready('You've done it enough damage already! ');

}

action ()
{
if (gIobj == heavyHammer)
{
setSuperclasslList ([Thing]) ;
movelInto (getOutermostRoom) ;
"The hammer strikes the panel with such force that the panel comes free of the
rail and falls to the deck. ";
}

else
"{The iobj/he} simply bounces off the panel. ";

Note the use of getSuperclassList() to test what class or classes the panel currently belongs to.

The setSuperclassList method can be very useful in cases such as this, where the alternative of determining the
behaviour of the temporary Component (or Fixture or whatever it may be) by testing the value of some flag in lots of
different places would be tedious, long-winded and error-prone. Nevertheless, it's a technique you'll probably want to
use sparingly, and with care (we shan't actually be using it at all in The Quest of the Golden Banana - the immediately
preceding code is hypothetical rather than something to be added to the game). The effect of setSuperclassList() is
that any methods or properties inherited by the object in question are now inherited from the new list of superclasses,
but that properties and methods defined on the object itself remain unaffected (unless they explicitly inherit behaviour).
A corresponding transformation will be wrought on anything that inherits from an object (or class) on which
setSuperclass list is invoked. Obviously this is a tool that needs to be used with some care; it would probably be
foolish and reckless to use it to transform a Flashlight into a Actor, or a ComplexContainer into a Candle for example.
On the other hand, it may often be useful to transform, say, a Fixture into a Thing (when something previously fixed
becomes portable) or a Thing into a Distant (when a portable object goes out of reach - say because it's a flag and
we've just hoisted it to the top of the pole).

4.10. Readable

A Readable, as its name suggest, is an object that can be read. In fact you can READ a Thing - it has precisely the
same effect as using EXAMINE on it. The main difference between a Thing and a Readable is that on a Readable you
can program different responses to READ and EXAMINE. EXAMINE Readable results in the display of its desc
property; but READ Readable results in the display of its readDesc (assuming readDesc is defined, i.e. non-nil,
otherwise the desc property is displayed).

The other main difference between a Readable and a Thing is that a Readable is regarded as the more logical target
of a READ command, so that other things being equal, the parser will choose a Readable object over other kinds of
Thing when disambiguating the direct object of READ (i.e. deciding which object the player meant when the command
is ambiguous).

Since the tablets all contain squares of letters, they could reasonably be regarded as Readable. We could therefore
redefine the Tablet class as:

class Tablet : Readable

Page 71

desc = "\"<<theName>> is about eight inches square and an inch thick. <<readDesc>>"

readDesc = "On it is inscribed:\b<<inscription>>\b"
bulk = 4
4.11. Food

The Food class, as its hame suggests, is used for things that can be eaten. By default, when eaten, an object of class
Food simply disappears (with a default message telling the player that he or she has eaten it). Since food can be
eaten it can also be tasted, or smelt. For that matter, it can be touched or felt. To describe what happens when we
TASTE it, SMELL it or FEEL it we can use its tasteDesc, smellDesc and feelDesc properties. If you really want to
you can even define soundDesc to define a response to a LISTEN TO command. Actually, all four of these properties
exist on Thing, but this seemed a convenient point at which to introduce them. Later on we shall be looking at more
sophisticated ways of handling sensory information. For now we'll just define a banana we'll leave in squareCave:

Food 'banana' 'banana' @squareCave
"It's yellow, about six inches long, and slightly curved. And It looks
reasonably fresh. "

tasteDesc = "It's distinctly banana-flavoured. "
smellDesc = "It has a kind of faint, fruity smell. "
feelDesc = "The banana skin feels firm but smooth. "
soundDesc = "The banana is strangely silent. "
initSpecialDesc = "Someone has left a banana here. "

4.12. disambigName

If you haven't tried compiling and running the game for a while, now would be a good time to try. Try going into the
square cave (using the MEGA or FIAT LUX command to light your path) and then try TASTE BANANA, SMELL
BANANA, FEEL BANANA and LISTEN TO BANANA. Then try taking the banana, moving west back into the main
cave, dropping the banana, and then trying to take it again with a TAKE BANANA command. At this point you should
encounter the following problem:

>take banana
Which banana do you mean, the banana, or the golden banana?

>banana
Which banana do you mean, the banana, or the golden banana?

>

Since we have called our edible banana simply 'banana’ there is nothing we can call it that will distinguish it from the
golden banana, so in this situation nothing we type will enable us to take the (edible) banana. We could, of course,
add edible to its vocabWords, but that won't be apparent to the player, and actually calling it 'edible banana'’ in its
name property would look a bit clumsy. In a case like this the solution is to give it a disambigName property, a name
that will be used solely for the purpose of disambiguation. We might amend our banana thus:

Food ' (edible) banana' 'banana' @squareCave
"It's yellow, about six inches long, and slightly curved. And It looks
reasonably fresh. "

tasteDesc = "It's distinctly banana-flavoured. "
smellDesc = "It has a kind of faint, fruity smell. "
feelDesc = "The banana skin feels firm but smooth. "
soundDesc = "The banana is strangely silent. "
disambigName = 'edible banana'

initSpecialDesc = "Someone has left a banana here. "

’

If you now compile and run the game again, you'll see how using disambigName (coupled with adding 'edible’ to the
banana's vocabulary) has solved the problem.

Page 72

4.13. Wearable

A Wearable is simply something that can be worn by an actor. Try defining the following:

cap : Wearable 'sailor\'s cap' 'sailor\'s cap' @mainCave
"It's a large round hat with a white top and a small blue peak. "

’

Now recompile the game, go to the mainCave, and try WEAR CAP, INVENTORY, REMOVE CAP, INVENTORY (four
separate commands).

The most interesting methods and properties that Wearable introduces are wornBy, isWorn() and iswornBy(actor).
None of these are properties or methods you'd normally want to override, but you might have occasion to test their
values. wornBy returns the actor object that is currently wearing the Wearable (or nil if it is not being worn), isWorn()
returns true if the Wearable is being worn and nil otherwise, and isWornBy(actor) similarly tests for its being worn by
a specific Actor. We shall make use of isWorn() shortly, when we add some complications to this cap. Also, we shan't
be leaving this cap in mainCave, but it'll have to stay there till we create a new location for it.

Page 73

5. Containers

5.1. Containers - Introduction

For the purposes of our guided tour of the TADS 3 library, "containers" include every type of physical object that can
physically contain another in some way, not only in the obvious sense that the contained object is inside the container,
but also where it is on, under or behind the container.

Another way of defining containers in the TADS 3 library is as descendants of the BulkLimiter class:

BulkLimiter

BasicContainer
Container
Booth
Dispenser
Matchbook
OpenableContainer
KeyedContainer
LockableContainer
RestrictedContainer
SingleContainer
StretchyContainer
SpaceOverlay
RearContainer
RearSurface
Underside
Surface
Bed
Chair
Platform
NominalPlatform

Some of these will be left to later chapters, since they inherit from other classes we haven't dealt with yet (e.g. Bed,
Chair and Platform are all types of NestedRoom, which we'll deal with later, and we'll need to delay discussion of
KeyedContainer until we discuss locks and keys in the next chapter). In the present chapter we'll cover the simpler
kind of containers. We'll also be covering the following functionally related classes:

ComplexComponent
ComplexContainer

5.2. BulkLimiter

BulkLimiter is the common base class for containers and surfaces: things that have limited bulk capacities. You
probably won't have cause to use this class directly; you'll usually use subclasses such as Surface and Container
instead.

BulkLimiter defines the following properties that are inherited by its subclasses:

o bulkCapacity - the total aggregate bulk that can be contained in this object (by default, 10000).

e maxSingleBulk - the maximum bulk that any individual item inserted into the BulkLimiter may have (by default 10).

¢ revealHiddenltems - a flag that determines whether any Hidden items will be revealed when this BulkLimiter's
interior is examined (i.e. when look in, under, or behind will cause the discover method of any item of class Hidden
to be called). By default this is true, representing the fact that when we look in, under or behind something we
normally see what was there even if we didn't before we looked; if desired this can be set to nil so that Hidden items
remain hidden.

e tooFullMsg - The message that is displayed when adding a new object would exceed the BulkLimiter's
bulkCapacity. This may be overridden on subclasses.

e becomingTooFullMsg - the message property to use when doing something to one of our contents would cause
our overall contents to exceed our capacity.

e becomingToolLargeMsg - the message property to use when doing something to one of our contents would make

Page 74

it too large to fit all by itself into this container (that is, it would cause that object's bulk to exceed our
maxSingleBulk).

BulkLimiter also overrides the notifylnsert() method to check whether an object will fit into BulkContainer (which it
won't if either the aggregate bulkCapacity or the individual maxSingleBulk would be exceeded by the insertion).

5.3. Surface

Perhaps the simplest kind of container, or BulkLimiter, is the Surface, which is simply something you can put things
on. The description of entranceCave mentions a narrow ledge carved into one wall, and this would be a good
candidate for a Surface; in this case the Surface will also be a Fixture since it's plainly not something we can carry
around:

Surface, Fixture 'narrow ledge' 'narrow ledge' @entranceCave
"It's about a foot wide and two feet long. "
bulkCapacity = 25

’

Setting the bulk capacity to 25 isn't essential here, but since the ledge is described as narrow, there must presumably
be some limit to how much can be placed on it. If you like you can try running the game and putting things on the
ledge.

Another good candidate for a Surface is the desk in the cabin, which is plainly something one could put things on.
While we're at it, we'll put something on it:

cabinDesk : Heavy, Surface 'large solid oak desk' 'desk' @greatCabin
"It's a large, solid oak desk. A button is fixed underneath it. "
inRoomDesc = "A large oak desks sits in the middle of the cabin.

"

+ chart : Readable 'chart' 'chart'
"It appears to be a chart of the lake.

"

readDesc = "According to the chart the lake is roughly circular. There appears to
be one landing spot each on the north, south, east and west shores of the lake. "
initSpecialDesc = "A chart lies open on the desk. "

’

Note the use of the + location here; anything located in a Surface is considered to be on it. Technically this should
cause a problem for our previously defined Button object (used to unlock the hidden door in the bulkhead), but the
way we've described the desk and the button, together with the fact that the button is a Component means that we
can in fact get away with it, although later we'll look at a way of tying up this potential loose end.

5.4. BasicContainer

Next to a Surface, the simplest kind of BulkLimiter is a Container, which, as you'd expect, is simply something that can
contain other things. The main difference between a Surface and a Container is that whereas the contents of a
surface are regarded as being on the surface, the contents of a Container are regarded as being in the Container.

The other main difference between a Container and a Surface is that, unlike a Surface, a Container can be either
open or closed. If a Container is open its contents are visible and can be removed from the Container, while other
things can be inserted into the Container (subject to restrictions of bulk and so forth). If, on the other hand a Container
is closed, nothing can be inserted into or removed from it, and, unless the Container is made of some transparent
material, its contents will be invisible.

A basic container is an object that can enclose its contents. This is the core of the Container type, but this class only
has the bare-bones sense-related enclosing features, without any action implementation. This can be used for cases
where an object isn't meant to have its contents be manipulable by the player (so we don't want to allow "put in" and
so on), but where we do want the ability to conceal our contents when we're closed.
BasicContainer defines a few properties of its own, of which the most significant are:

Page 75

¢ isOpen - defines whether this BasicContainer is open or closed. By default, this property is true. An open box, for
example, would have isOpen true, whereas it would be nil on a sealed glass tube.

e material - the material from which this container is made; this basically defines whether and how an object in the
container can be sensed if the container is closed. The default is adventium, which prevents an object in a closed
container being sensed at all. If the material were glass, we could see what was inside, but not otherwise interact
with it. If it were paper, we could smell or hear an object in the closed container (assuming it was noisy and smelly)
but not see or touch it.

In practice, it's hard to think of examples where this class would be useful (as opposed to one of its subclasses). One
possible use would be to have an object permanently encased in a glass container - but then there would seem to be
no reason not to have a single object which described itself as a glass container encasing a dead butterfly or whatever
it is. On the other hand, if the container can be broken open at some point and the contents removed, never to be
replaced, one could use a BasicContainer for that.

To illustrate the fact that if a closed container is transparent you can see its contents but not touch them (and hence
not manipulate them), let's create a sealed transparent container with something inside. To make the jar transparent
we override its material property to glass.

glassJar : BasicContainer 'glass jar' 'glass jar' @mainCave
"It seems to be sealed fast. "
isOpen = nil
bulkCapacity = 4
material = glass

+ hexCrystal : Thing 'hexagonal blue crystal' 'blue crystal'
"The crystal is almost cylindrical, except that it has a hexagonal
cross-section. It's about eight inches long and pulsates with
a faint blue light. "
brightness = 1
bulk = 2
weight = 2

’

Note that since we have described the crystal as pulsating with a faint blue light we give it a brightness of 1 - enough
to make it self-illuminating in the dark but not enough for it to illuminate anything else. To see the effect, try carrying
the crystal (by carrying the jar) into a dark room. We'll implement a way of getting the crystal out of the jar shortly.

5.5. Container

Although the plain Container class contains no handling for dealing with OPEN and CLOSE commands from the
player (for that you need OpenableContainer or one of its subclasses), it does have an isOpen property that can be
set and manipulated by the author in game code, and, unlike BasicContainer, a Container does allow things to be put
inside it in response to a PUT IN command.

One item we have already defined that could be used as a Container, though not obviously so, is the sailor's cap. It
won't have a huge capacity, but a cap ought to be able to contain a few small items. Also, it will have the interesting
property that it will be closed when worn and open otherwise.

cap : Wearable, Container 'sailor\'s cap' 'sailor\'s cap' @mainCave
"It's a large round hat with a white top and a small blue peak. "
bulkCapacity = 3
isOpen { return 'isWorn(); }

’

Try compiling and running the game, then move to mainCave and experiment with using the cap as a Container when
it is and isn't worn (for now you can use the boulder as the object to put in it, though this isn't very realistic). Everything
should work fine until you try to put the boulder in the cap while the player character is wearing the cap, whereupon
you'll get:

>put boulder in cap
You can't move that through the sailor's cap.

Page 76

Although far from disastrous, this is certainly less than ideal. Although you could override the message, a neater
solution is to add objNotWorn to the preconditions for putting anything in the cap:

cap : Wearable, Container 'sailor\'s cap' 'sailor\'s cap' @mainCave
"It's a large round hat with a white top and a small blue peak. "
bulkCapacity = 3
isOpen { return !isWorn(); }
iobjFor (PutIn) { preCond = static inherited + objNotWorn }

’

Then, when the player attempts to put something in the cap while it is worn, a REMOVE CAP command is carried out
as an implicit action and the PUT IN command follows (try it and see).

5.6. OpenableContainer

If, unlike the cap and the glass jar in the last two sections, you want a container that can be opened and closed by the
player, then you need to use OpenableContainer (or one of its lockable subclasses, which we'll be encountering later).
As an example of a simple OpenableContainer we'll leave a first aid kit on the ledge in entranceCave and put a couple
of items in it. For convenience, the definition of the ledge is repeated to show the nesting relationship using the +
syntax:

Surface, Fixture 'narrow ledge' 'narrow ledge' @entranceCave
"It's about a foot wide and two feet long. "
bulkCapacity = 25

’

+ firstAidKit : OpenableContainer 'small white first aid box/kit' 'first aid kit'
"It's made of some kind of white plastic and is about nine inches long. The 1lid
is marked with a broad red cross. "

initSpecialDesc = "A small white box lies on the ledge. "
bulkCapacity = 3
bulk = 4

++ syringe : Thing 'syringe' 'syringe';

++ stickingPlaster : Thing 'sticking adhesive plaster' 'sticking plaster’';

Note the use of the + notation to place the firstAidKit on the ledge, and the ++ notation to indicate a second level of
nesting to put objects in the firstAidKit. The use of initSpecialDesc means that it will be described as a 'small white
box' when the player first encounters it, but will be listed as 'a first aid kit' once the player picks it up, which seems
reasonable: its vocabulary has been defined so that it will answer to either appellation. Since it is only a small box we
give it quite a small bulkCapacity, and a bulk that's just a bit bigger than its capacity. We also place a couple of items
in it, but their definition is minimal for now - we'll be fleshing them out in due course.

5.7. notifylnsert & notifyRemove

We are now in a position to implement the scales we can use for weighing the various objects in the game (and so
ultimately solve the altar problem that is yet to come). Scales obviously register a new reading each time something is
put on them or removed from them, and the best way to test for such occurrences in the TADS 3 library is by using the
notifylnsert(obj, newCont) and notifyRemove(obj) methods. These have the advantage that they'll also respond to
things being inserted into or removed from contents of contents and so forth. In the case of the scales, this means that
if | place a box on the scales and then put things in the box or take them out again, the scales' notifylnsert and
notifyRemove methods will still be called, so a change in the total weight on the scales will still be registered, which is
what we want.

To get at the total weight on the scales we can simply use the getWeight method. This returns the total weight of an
object and all its contents, so we need to subtract the scales own weight to get the total weight of all the objects
placed on it. Since the description of the scales states that the maximum weight it can register is 100 pounds, we need
to ensure that it never registers more, however much is placed on the scales. To get at the reading shown by the
scales we should thus define:

Page 77

reading = min((getWeight - weight), 100)

There is one major complication, however, and that is that notifylnsert and notifyRemove are called before the insert
or remove action is completed, so that at the time they are called, the reading property will register the weight on the
scales before the change, not after it as we want. There are probably several ways round this, but the one we have
adopted here is to use the afterAction() method. This is called on all objects (but not rooms) in scope after an action
is completed. To achieve the result we want here, we get afterAction to test whether the weight on the scales has
changed, and only if it has to display the new weight (and record it as the current weight).

The (somewhat complicated) definition of our set of scales is thus:

scales : Surface 'large weighing scales/pan/dial/needle' 'scales' (@entranceCave
"These scales comprise a large weighing pan fixed over a square body, on which
is a large dial with a needle that is currently pointing to <<reading>>. The
numbers round the dial range from 0 to 100, and according to the inscription
on the dials the unit of measure is pounds. "
reading = min((getWeight - weight), 100)
weight = 6
isPlural =
bulk = 10
bulkCapacity = 50
iobjFor (PutIn) asIobjFor (PutOn)
notifyRemove (obj)
{
weighMsg = 'As you remove '+ obj.theName;
}
notifyInsert (obj, newCont)
{
inherited(obj, newCont);
weighMsg = 'As you put ' + obj.theName + ' ' + newCont.putInName () ;

true

}
showWeight ()
{
"<<weighMsg>> the needle on the dial swings round to <<reading>>. ";
}

afterAction ()
{
if (reading != oldWeight)
{
showWeight () ;
oldWeight = reading;
}
}
oldWeight = 0
weighMsg = nil

’

There are a number of other points to note here. The first is the use of the isPlural property. Although the set of
scales is in fact a single object, its name property is 'scales’, which is grammatically plural; we therefore set isPlural to
true to ensure that in any message the parser generates about this object the verb will agree in number with its
grammatical subject (e.g. to ensure we don't get "The scales does not appear to be edible" when what we want is
"The scales do not appear to be edible"). The second is that in this case we can reasonably make the bulkCapacity
bigger than the bulk; there's no reason why a object placed on the scales should not be bigger than the scales. The
third is that since the scales are defined as having a pan the player might reasonably PUT X IN PAN as well as PUT X
ON SCALES; to handle that we use iobjFor(Putin) aslobjFor(PutOn) to translate a PUT IN command to a PUT ON
command. The notifylnsert() method is already defined on BulkLimiter; it already contains code (which, among other
things, checks that the object can be inserted and aborts the action if, for example, it is too bulky), so we must call the
inherited method. We use the two notifyXXX methods simply to start constructing a string that will be displayed if the
weight on the scales changes. The notifylnsert method also makes use of the putinName property which returns
something like 'in the container' or 'on the surface' as appropriate. Finally, we ensure that the afterAction() method
only does anything if the weight on the scales has actually changed. Note again that afterAction is called after any
action performed while the object is in scope - this ensures that only actions that change the weight on the scales are
acted upon here.

At this point it will be worthwhile to recompile and run the game to test the scales out. Try putting the first-aid box on
the scales, then open the first aid box and take the bandage; then try PUT SYRINGE ON SCALES; finally, obtain the
brass tablet and try putting it first in the first-aid box and then in the pan. Hopefully, everything should work as
expected.

Page 78

One small task remains, and that is to put the scales in a plausible locations; we'll place them in a cupboard in a galley
aboard the ship, which means we first need to create the galley and the cupboard:

galley : DarkCabin 'Galley' 'the galley'
"It looks like the galley has been more or less stripped bare. There's a work
surface with a cupboard underneath it, and not much else. "
aft = crewQuarters

;
+ Surface, Fixture 'work surface' 'work surface';

+ galleyCupboard : OpenableContainer, Fixture ' (galley) cupboard' 'cupboard';

Then change the first line of the definition of the scales to read:

scales : Surface 'large weighing scales/pan/dial/needle' 'scales' @galleyCupboard

Clearly, the definition of crewQuarters needs to be changed to reflect this new state of affairs, but we'll attend to that in
the next section.

5.8. LockableContainer

A LockableContainer is simply an OpenableContainer that can also be locked and unlocked. This is not as useful as it
might sound since a LockableContainer can be locked and unlocked simply by the player issuing LOCK LOCKER and
UNLOCK LOCKER commands. Moreover, even if a LockableContainer starts locked, an attempt to OPEN it will result
in an implicit UNLOCK command, so that in practice, a LockableContainer behaves much like an OpenableContainer.
If you want a container that's locked and unlocked with a key you need to use KeyedContainer, which we'll come to
presently.

A simple example of LockableContainer might be locker, which we'll put in the crew quarters:

locker : LockableContainer, Fixture ' (crew) locker' 'locker' (@crewQuarters
"The locker is fixed firmly to the bulkhead. "
bulkCapacity = 15
disambigName = 'crew locker'
initiallyLocked = true

Note that if we want a LockableContainer to start locked, we need to set its initiallyLocked property to true. The
library does this for Door and IndirectLockable, but you need to do it for anything else (except subclasses of Door, of
course).

The sailor's cap would be a good thing to put in the locker, so let's amend its starting location:

cap : Wearable, Container 'sailor\'s cap' 'sailor\'s cap' @locker
"It's a large round hat with a white top and a small blue peak. "
bulkCapacity = 3
isOpen { return !isWorn

(0);
iobjFor (PutIn) { preCond

’ }
= static inherited + objNotWorn }

At this point we should update the definition of crewQuarters to reflect the presence of the locker and the galley further
forward:

crewQuarters : DarkCabin 'Crew Quarters' 'the crew quarters'
"The crew quarters seem largely deserted, apart from a single locker
fixed to the bulkhead. There's an exit back aft and a ladder leading down into
the hold. Another exit leads foreward. "
down = holdLadderDown
aft = greatCabin
fore = galley
cannotGoThatWayInDark ()

Page 79

’

To make the lock on the locker a bit more worthwhile, we'll suppose that it's fastened by a latch that's rusted shut, and
which will only open once we have poured some oil on it. To do this we add a custom oiled property, which we use in
the makeLocked method. This method is called in response both to a LOCK and an UNLOCK command; its stat
parameter is true if we want to lock something and nil if we want to unlock it. We can use this method to abort any
attempt to lock or unlock the locker until the latch has been oiled. Finally, we add some handling for the PourOnto
command on the latch, so that if this latch is the indirect object of PourOnto and the direct object is the oilcan, the
oiled property is set to true (which will then allow the locker to be unlocked and opened). Since the player may also try
to PULL or PUSH the latch, we add handling for that, making the two commands equivalent. We also redirect any
attempts to OPEN, CLOSE, LOCK or UNLOCK the latch back to the locker object.

locker : LockableContainer, Fixture ' (crew) locker' 'locker' (@crewQuarters
"The locker is fixed firmly to the bulkhead. Its door is fastened by a simple
latch mechanism, though the latch looks a bit rusty. "
bulkCapacity = 15

disambigName = 'crew locker'
initiallyLocked = true
makeLocked (stat)

{
if (!'lockerLatch.oiled)

{
reportFailure ('The latch is stuck fast. ');

exit;
}
inherited(stat);
}
NameAsOther, SecretFixture targetObj = locker location = crewQuarters;

+ lockerLatch : Component ' (locker) latch' 'latch'
"The latch looks a bit rusty. It's currently in the <<locker.isLocked
? nil : 'un' >>locked position. "
iobjFor (PourOnto)
{
verify () { }
action ()
{
if (gbhobj == oilCan)
{
"You pour some oil onto the latch. ";
oiled = true;
}
else
"It doesn't seem to do much. ";
}
}
dobjFor (Push) asDobjFor (Pull)
dobjFor (Pull)
{
verify () {}
action ()
{
locker.makeLocked (!locker.isLocked) ;
"This <<isLocked ? nil : 'un'>>locks the locker. ";
}
}
oiled = nil
disambigName = 'locker latch'
dobjFor (Open) remapTo (Open, locker)
dobjFor (Close) remapTo (Close, locker)
dobjFor (Lock) remapTo (Lock, locker)
dobjFor (Unlock) remapTo (Unlock, locker)

’

A fatally easy mistake to have made here would have been to have made the latch a Component of the locker object.
The problem with this would have been that this would have placed the latch inside the locker, and therefore not
available until the locker was opened (and it's impossible to open the locker without access to the latch, so we'd be in
a pretty fix!). For that reason we define another object for the latch to be a Component of (a better way would have
been to make the locker a ComplexContainer, but we haven't come to those yet). The player will never interact with
Page 80

this object directly, so it needs no vocabulary. We want it to appear to be the locker when, for example, the player
attempts to TAKE THE LATCH, so we make it a NameAsOther (a mix-in class) and set its targetObj property to the
locker; the effect of this is that any parser messages referring to this object will describe it in exactly the same way as
the locker. We also make the object a SecretFixture, since it is an object we need for internal implementation, but not
one the player will ever interact with directly.

Note that on the locker we use exit to abort the UNLOCK command if latch.oiled is nil, and the reportFailure
macro to explain why the unlock command has failed. The latter is important since the UNLOCK might be an implicit
action when the player tries to OPEN the locker; using reportFailure here ensures that the implicit action report the
player sees then says "(first trying to unlock the locker)" rather than "(first unlocking the locker)". The PourOnto
handling is fairly straightforward: it tests whether the direct object (gDobj) is the oil can, and if so displays an
appropriate message and sets the oiled property to true, otherwise it displays a non-commital message about not
much happening.

We also need to define the oil can. Here we'll provide the minimal definition to do the job. We'll elaborate it later when
we use the oil for other purposes (such as fuel for a lamp).

oilCan : Thing 'oil can/oilcan' 'can of o0il' (@secretPassage
"It's a can full of oil. "
initSpecialDesc = "An old o0il can lies abandoned on the ground. "

dobjFor (PourOnto) { verify() { } }

5.9. RestrictedContainer

A Restricted Container is a container that will accept only a limited set of items, defined by the game author.

You may recall that we defined a hexagonal hole in the panel fixed to the quarterdeck rail. This is an obvious
candidate for a restricted container, since, as you may by now have guessed, it is designed solely for the hexagonal
crystal (for some reason known only in IF Heaven, the ship will only sail when the crystal is in its slot). The definition of
the hole needs to be put directly after that of the panel, which we therefore repeat for convenience:

+ Component 'large wooden panel' 'panel'
"The panel seems to have something to do with sailing the ship. A wheel and a lever
are mounted on it, and between them is a hexagonal aperture. "

’

++ hexHole : RestrictedContainer, Component 'hexagonal hole/aperture' 'hexagonal hole'
validContents = [hexCrystall]

’

Note that we specify what can be put in the hole using its validContents property, which contains a list (here
containing only a single item) of everything that can be validly inserted. In some cases it might be more convenient to
override a RestrictedContainer's canPutin(obj) method. For example if we had defined a Widget class and were now
defining a widgetBox that could only take Widgets, we might define its canPutin method as

canPutIn(obj) { return obj.ofKind (Widget}; }

The only difficulty we have right now is that the hexagonal crystal is trapped inside a glass jar, so we can't try inserting
it in the hole. Let's assume that one way of getting it out is by cutting the jar open with something suitably hard. First,
we'll define a couple of potential cutters (which will also figure later in the game for other purposes):

diamond : Thing 'sparkling diamond' 'diamond' @pathEnd
"It looks like the genuine article. "
iobjFor (CutWith) { verify() { } }

’

diamondRing : Wearable 'diamond ring' 'diamond ring'
"It's a fine platinum band with a sparkling solitaire diamond. "
iobjFor (CutWith) { verify() { } }

’

Don't worry that we haven't given any location to the diamondRing, the reason will become apparent in due course.
Page 81

Now we can amend our definition of the class jar to allow it to be cut open:

glassJar : Container 'glass jar' 'glass jar' @mainCave
"It <<if isOpen>>has been cut open<<else>>seems to be sealed fast<<end>>. "
isOpen = nil
bulkCapacity = 4
material = glass
canBeCutBy = [diamond, diamondRing]
cannotOpenMsg = (isOpen ? 'It\'s already been cut open'
'{You/he} can\'t see any way to open it. ')
notAContainerMsg = iobjMsg(isOpen ? 'Now that it\'s been cut open, it
won\'t hold anything. ' : 'There\'s no way
{you/he} can put anything inside the sealed jar. ')
dobjFor (CutWith)
{
verify ()
{
if (isOpen) illogicalNow('The glass jar has already been cut open.');
}
check ()
{
if (canBeCutBy. indexOf (gIobj) == nil)
failCheck (' {You/he} can\'t cut it with {that iobj/him}. ');
}
action|()
{
"{You/he} cut{s} open the glass jar. ";
isOpen = true;
}
}

’

Note that canBeCutBy is not a library property, it is one we have defined ourselves. It makes it easy to add to the list
of items that can be used to cut open the glass jar, should we think of any others at later stage. The failCheck ()
method (a method of Thing) was introduced in version 3.0.9. Check methods often contain code like this:

check ()
{
if (someCondition)
{
reportFailure ('There\'s some reason why that won\'t work. ');
exit;

Where the reportFailure macro tells the parser that the proposed action has failed for some reason (though in
practice you could use a double-quoted string) and the exit macro terminates processing of the command on this
object (and so prevents the action routine from being run). Since this coding pattern is so common, in TADS 3.0.9 it
can now be shortened to:

check ()
{

if (someCondition)
failCheck ('There\'s some reason why that won\'t work. ');

Which does exactly the same thing. So the check routine on glassJar is exactly equivalent to:

check ()
{
if (canBeCutBy.indexOf (gIobj) == nil)
{
reportFailure (' {You/he} can\'t cut it with {that iobj/him}. ");
exit;

}
It's just that using the failCheck() method enables you to code this a little more concisely.

Note also that we have made use of the ability introduced in TADS 3.0.6n to override library messages with our own
Page 82

versions (in this case cannotOpenMsg and notAContainerMsg) to display something more meaningful in this particular
case. Note also that in the case of notAContainerMsg we have used the iobjMsg () macro (new in version 3.0.9),
because we only want the customized response to be used when the glass jar is used as the indirect object of a
command. If we didn't do that we'd see something like:

>PUT COIN IN GLASS JAR
There's no way you can put anything inside the glass jar.

>PUT GLASS JAR IN COIN
There's no way you can put anything inside the glass jar.

This is because unless we specify otherwise, our overridden message will be used whenever the object on which it is
overridden is involved in the corresponding command (in this case, a PUT IN command), whether as the direct object
or the indirect object. To avoid that we could write:

notAContainerMsg = (gIobj == self ? 'My custom message' : nil)

If a message property returns nil this is taken as meaning "use the standard library message". The iobjMsg macro
simply makes this a bit easier; allowing us to write the above line as:

notAContainerMsg = iobjMsg('My custom message')

Which compiles to exactly the same code. If we wanted our custom message to work only when the object its defined
on is the direct object of a command, we'd use the dobjFor macro instead; the following two lines are exactly
equivalent:

notAContainerMsg = dobjMsg('My custom message')
notAContainerMsg = (gDobj == self ? 'My custom message' : nil)

Note that there is no need to use this for a message property for a verb that only takes a direct object; e.g., if we
define a custom cannotOpenMsg property there's no need to use the dobjMsg macro since an object can never be the
indirect object of an OPEN command.

You may wonder how we know what names to use for these properties: one answer is to look in the library source
code to see what message properties are used in the verify(), check() or action() methods of the verbs for which you
want to customize the responses.

For example, if we look at the definition of Thing in the library code, we find the following handling for when a Thing is
the indirect object of a Putin command:

iobjFor (Putln)

{
preCond = [touchObj]
verify ()

{
/* by default, objects cannot be put in this object */
illogical (¬AContainerMsqg) ;

This means that, left to its own devices, a Thing will respond to an attempt to put anything inside it with the message
defined in the notAContainerMsg of the playerActionMessages object. If, however, as here, we define our own version
of notAContainerMsg on either the direct or indirect object involved in the action, our own version will be used in
preference (subject to our use of the iobjMsg and dobjMsg macros or their long-winded equivalents).

You may, however, find it easier to use the TADS 3 Action Messages quick-reference chart, which you can download
either from _http://www.tads.org/howto/ActionMessages.zip or from users.ox.ac.uk/~manc0049/TADSGuide/QRefs.zip.

Note that there are also RestrictedSurface, RestrictedUnderside, RestrictedRearSurface and RestrictedRearContainer
classes which work analogously to RestrictedContainer except that they relate respectively to Surface, Underside,
RearSurface and RearContainer. All these RestrictedWhatever classes derive from the common RestrictedHolder
base class which define validContents and canPutin(obj) as described for RestrictedContainer above.

Page 83

http://www.tads.org/howto/ActionMessages.zip
http://users.ox.ac.uk/~manc0049/TADSGuide/QRefs.zip

5.10. Dispenser

Later in the game the player will use a candle to start exploring the dark areas. In theory the candle could burn out
before the player succeeds in finding an alternative light source, thus rendering the game unwinnable. It would thus be
desirable for the player to have a large supply of candles available. For this we'll create a box that dispenses candles -
a Dispenser object. In fact the Dispenser doesn't handle much apart from restricting what can be put in it, so this may
not be a terribly good example, since we'll have to do most of the work in our own code.

The standard Dispensable properties we override on this object will be myltemClass and canReturnitem. We shall
shortly create a RedCandle class to be the item dispensed from this box, so we set myltemClass = RedCandle. If this
were a matchbook we could not return matches to it after we had torn them off, but there seems no reason why we
should not return candles to the box, so we set canReturnltem to true.

We don't want to create a whole lot of red candles that will never be used - the idea is to allow the player to obtain
another one if the one he or she is using burns down before an alternative light source is found. We shall therefore
create new candles dynamically on demand; we do this in the notifyRemove method. However, to avoid creating
candles needlessly, we only create a new one if there's less than two left in the box. Again, we don't want the player to
be able to go on obtaining candles ad infinitum so we set a maximum (in our custom property maxCandlesToCreate)
and keep a count of the number created (in the custom property candlesCreated). Provided it's okay to create another
candle, we do so using the dynamic object creation syntax (new RedCandle) and move it into the box. The definition
of the candleBox then looks like this:

candleBox : Dispenser 'large green box' 'large green box' @secretPassage
desc ()

{

"The box 1is ";

if (contents.length > 10 || candlesCreated < maxCandlesToCreate/2)
"full of red candles. " ;

else if (contents.length < 1 && candlesCreated == maxCandlesToCreate)
"empty. ";

else if (candlesCreated < (3 * maxCandlesToCreate)/4)
"is about half full of red candles. ";

else
"is running out of red candles. ";

}
myItemClass = RedCandle
canReturnItem = true
initSpecialDesc = "A large green box sits by the wall.
notifyRemove (obj)
{
if (contents.length < 2 && candlesCreated < maxCandlesToCreate)
{
local cur = new RedCandle;
candlesCreated++;
cur.movelnto (self);

}

}

candlesCreated = 0

maxCandlesToCreate = 40

weight = (2 + maxCandlesToCreate - candlesCreated)
bulk = 5

dobjFor (LookIn) asDobjFor (Examine)

The other things we have done to the candleBox is to give it a fairly complex description method which gives a
suitable but vague description of its contents, and a calculation of its weight based on the number of candles there are
left to create (which must notionally still be in the box). To put an initial red candle in the box we need simply to add:

+ RedCandle;

But then we have to implement the RedCandle class:

class RedCandle : Dispensable, Candle 'red candle*candles' 'red candle'

Page 84

"It's a long red candle. "

isEquivalent = true
isListedInContents = (!isIn (myDispenser))
myDispenser = candleBox

’

Candle is a library class that we'll come to presently. What needs to be noted here is that since all the red candles will
be identical, we set isEquivalent to true on the class definition; this tells the library that all members of the RedCandle
class are functionally identical and interchangeable. This allows you to (say) issue a command TAKE A CANDLE or
DROP A CANDLE and have the game respond appropriately even when there are several red candles in scope. It
also means that if we pick up three candles and issue an INVENTORY command, we'll be told "You are carrying three
red candles" rather than "You are carrying a red candle, ared candle and a red candle." Note that it is important to
specify the *candles plural in the vocabWords property so we can issue commands like TAKE TWO CANDLES or
DROP BOTH CANDLES.

We set the library myDispenser property to candleBox; this simply allows the parser to assume that any command
other than TAKE or TAKE FROM directed at a candle is more likely to refer to a candle that's already out of the box.
We make further use of this property in an overridden isListedinContents, which we set to nil for candles still in their
original container. This is to prevent the game announcing the exact number of candles in the box, which would be a
misleading number (not taking into account the new candles the box was capable of creating) and would clash with
the description we have provided in candleBox.desc.

5.11. StretchyContainer

A StretchyContainer is simply a Container that changes bulk according to its contents. An example might be a sack,
which would have virtually no bulk when empty, but becomes bulkier the more is put in it. We can leave one in the
squareCave, which could be used for carting things around in:

sack : StretchyContainer 'coarse brown sack' 'coarse brown sack' @squareCave
initSpecialDesc = "A coarse brown sack lies crumpled in the corner. "
bulkCapacity = 30
minBulk = 1

’

Presumably not even a StretchyContainer is infinitely elastic, so we give it a finite bulkCapacity. We can also set a
minBulk which is the bulk of the sack when empty.

Note that if we want to find out how bulky the sack has become at any point in our game code we need to test its
getBulk() method, not its bulk property (which never changes).

5.12. SpaceOverlay

You are unlikely to use a SpaceOverlay directly (except perhaps to derive your own subclass from it). The main
function of the SpaceOverlay class is to provide common functionality for its subclasses: Underside, RearContainer,
and RearSurface. It is worth considering the SpaceOverlay before its subclasses, however, in order to be aware of the
common behaviour they all inherit.

According to the comments in the library code:

A "space overlay" is a special type of container whose contents are supposed to be adjacent to the container object
(i.e., self), but are not truly contained in the usual sense. This is used to model spatial relationships such as UNDER
and BEHIND, which aren't directly supported in the normal containment model.

The special feature of a space overlay is that the contents aren't truly attached to the container object, so they don't
move with it the way that the contents of an ordinary container do. For example, suppose we have a space overlay
representing a bookcase and the space behind it, so that we can hide a painting behind the bookcase: in this case,
moving the bookcase should leave the painting where it was, because it was just sitting there in that space. In the real
world, of course, the painting was sitting on the floor all along, so moving the bookcase would have no effect on it; but
our spatial relationship model isn't quite as good as reality's, so we have to resort to an extra fix-up step. Specifically,
when we move a space overlay, we always check to see if its contents need to be relocated to the place where they

Page 85

were really supposed to be all along.
SpaceOverlay defines the following properties that are inherited by its subclasses:

e abandonLocation - This is the location where objects located in a SpaceOverlay (Underside, RearContainer or
RearSurface) end up when the SpaceOverlay is moved. By default, this will be the immediate container of the
SpaceOverlay. For example, if the SpaceOverlay represents the underside or rear of a dressing table, if the
dressing table is moved, then we would expect whatever was behind it to stay put in the dressing table's original
location. You can override abandonLocation to some other location if that's where objects in the SpaceOverlay
should fetch up, or set it to nil if you want objects in the SpaceOverlay to move with the SpaceOverlay (because
they're to be considered attached to the underside or rear of the object that's moved). In addition, any object of
class Component in a SpaceOverlay will always move with the SpaceOverlay, since a Component is assumed to be
attached to its parent object.

o alwaysListOnMove - If this property is set to nil (the default), the SpaceOverlay only lists its contents the first time
it's moved (on the basis that if you moved, say, a piece of furniture, you would then see what was behind it or
underneath it). If alwaysListOnMove is set to true, on the other hand, then the contents of the SpaceOverlay are
listed every time it is moved.

Note that a SpaceOverlay will generally be implemented as a Component of a ComplexContainer: in such a case the
'it' that will actually be moved (causing SpaceOverlays such as its Underside or RearSurface) will be the
ComplexContainer (though it will of course take its SpaceOverlays with it).

5.13. Underside

An "underside" is a special type of container that describes its contents as being under the object. This is appropriate
for objects that have a space underneath, such as a bed or a table.

Usually, an Underside is not much use by itself (since it would be the Underside of something), and one would
normally use it as part of a ComplexContainer. It is, however, possible (though more laborious) to link an Underside to
another object using remapTo commands. Just to show how it could be done, we'll give the desk in the cabin an
Underside by this means, and then hide the button under it, so that the player can only find it by explicitly looking
under the desk:

cabinDesk : Heavy, Surface 'large solid oak desk' 'desk' @greatCabin
"It's a large, solid oak desk, with a single drawer. "
initSpecialDesc = "A large oak desk sits in the middle of the cabin.
specialDescOrder = 50
dobjFor (LookUnder) remapTo (LookUnder, underDesk)
iobjFor (PutUnder) remapTo (PutUnder, DirectObject, underDesk)

+ underDesk : NameAsOther, Underside, Component
targetObj = cabinDesk

’

++ Hidden, Button, Component 'small brown button' 'small brown button'
"The small brown button is fixed to the underside of the desk. "
dobjFor (Push)
{

action()
{
"There's a sharp <i>click</i>, and a section of the foreward bulkhead slides
<<bulkheadDoor.isOpen ? 'closed' : 'open'>>. ";
bulkheadDoor.makeOpen (!bulkheadDoor.isOpen) ;
}
}

isListedInContents = (discovered)

Note that this anticipates the use of the Hidden class, which we'll be looking at in more detail later.

Apart from a number of message properties, the main new property of interest defined on Underside is
allowPutUnder; if this is set to true, actors (including the player character) may place objects in (i.e. under) this

Page 86

Underside; otherwise they may not. allowPutUnder is true by default.

5.14. RearContainer

A rear container represents the space behind an object. The principal additional property it defines is
allowPutBehind; if this is true, objects may be placed in the RearContainer with a PUT BEHIND command; if it is nil,
they may not.

For the most part, a RearContainer will be most useful as the ComplexComponent of a ComplexContainer, since it is
hard to think of something that only has a rear. A RearContainer can, however, quite successfully be used for an
object like a painting or a mirror hanging on a wall, for example:

mirror : RearContainer 'large gilt-framed gilt framed mirror'
'mirror' QanotherCave
"The mirror is about three foot tall by eighteen inches wide. It is
brightly silvered, so that your reflection in it is no more flattering
than you would expect. "

initSpecialDesc = "A large gilt-framed mirror hangs on the wall opposite
the dressing table. "

bulk = 8

weight = 4

allowPutBehind = nil

’

+ smallHoleInWall : Hidden, Container, Fixture 'small hole' 'small hole'
"It's just a couple of inches square, and about as deep. "

specialDesc = "There's a small hole in the wall
opposite the dressing table. "
initSpecialDesc = "Behind the mirror is a small hole in the wall. "

bulkCapacity = 2

Once again it has been necessary to anticipate the introduction of the Hidden class, but it's virtually impossible to
illustrate the use of a RearContainer (or other SpaceOverlay) without it, so it'll just have to be taken on trust for now.
The effect is that the small hole in the wall will be revealed only when the player looks behind the mirror or takes it for
the first time. Also, when the mirror is moved, the small hole is moved from the mirror to the mirror's former location,
which paradoxically has the effect of leaving it behind in the same place. This occurs even though the small hole is a
fixture, so that after the mirror is moved, the hole ends up being a Fixture in the room, which is what we want.

Note that we have set allowPutBehind to nil to prevent anything being put behind the mirror; which would normally
make sense (since it would normally not be that easy to put sundry objects behind a mirror hanging on the wall). In
this case, however, we might feel that while the mirror is still hanging on the wall, putting something behind the mirror
is equivalent to putting it in the hole, but that it should not be possible to put anything behind the mirror once it's been
moved. We can implement this like so:

mirror : RearContainer 'large gilt-framed gilt framed mirror'
'mirror' @anotherCave
"The mirror is about three foot tall by eighteen inches wide. It is
brightly silvered, so that your reflection in it is no more flattering
than you would expect. "

initSpecialDesc = "A large gilt-framed mirror hangs on the wall opposite
the dressing table. "

bulk = 8

weight = 4

allowPutBehind = (!'moved)
iobjFor (PutBehind) maybeRemapTo (!moved, PutIn, DirectObject, smallHoleInWall)

In due course, we'll hide a small piece of black wire in the small hole, but we'll wait till we get to the point when this bit
of wire is needed and we've covered the ground we need to implement it properly. In the meantime, there's one further
detail to attend to. As things are at the moment, when you take the mirror the transcript goes something like this:

>take mirror
Behind the mirror is a small hole in the wall. Taken.

In this case it's reasonably obvious that "Taken' must refer to the mirror and not the small hole, but it's not as clear as it
Page 87

might be, and in other circumstances, where what lay behind or beneath something was a portable object that easily
could be taken, the 'Taken' message might be downright misleading. We can make the message clearer by making
the following modification to SpaceOverlay:

modify SpaceOverlay
okayTakeMsg = '{You/he} take{s} {the dobj/him}. '

Now, to return to our ship, since the chair in the main cabin is described as being behind the desk, it may be tempting
to try this:

cabinDesk : Heavy, Surface 'large solid oak desk' 'desk' @greatCabin
"It's a large, solid oak desk, with a single drawer. "
initSpecialDesc = "A large oak desk sits in the middle of the cabin. "
specialDescOrder = 50
dobjFor (LookUnder) remapTo (LookUnder, underDesk)
iobjFor (PutUnder) remapTo (PutUnder, DirectObject, underDesk)
dobjFor (LookBehind) remapTo (LookBehind, deskRear)
iobjFor (PutBehind) remapTo (PutBehind, DirectObject, deskRear)

+ deskRear : NameAsOther, RearContainer, Component
targetObj = cabinDesk

’

cabinChair : Chair 'padded chair/cushion' 'chair' @deskRear
"It's a fine wooden chair with a round back and a padded cushion. "
initSpecialDesc = "A wooden chair sits behind the desk. "
bulk = 10
weight = 7

This appears to work well enough, in that you can look behind the desk and be told that the chair is there, or take the
chair, subsequently put it behind the desk and find that it's described as being there once more, but you'll quickly
discover that it all goes horribly wrong if you try to sit on the chair while it's behind the desk.

It takes quite a bit of work to fix this, which will involve classes and concepts we haven't met yet (particularly the
Platform class) . But to show what